
csc2406

Web Technology
Faculty of Sciences

Study Book

Written by

Dr. Leigh Brookshaw & Dr. Richard Watson
The University of Southern Queensland

c© The University of Southern Queensland, June 12, 2012.

Distributed by

The University of Southern Queensland
Toowoomba, Queensland 4350
Australia
http://www.usq.edu.au

Copyrighted materials reproduced herein are used under the provisions of
the Copyright Act 1968 as amended, or as a result of application to the
copyright owner.

No part of this publication may be reproduced, stored in a retrieval system
or transmitted in any form or by any means electronic, mechanical,
photocopying, recording or otherwise without prior permission.

Produced with LATEX by the author(s) using the Department of
Mathematics & Computing (http://www.sci.usq.edu.au) StudyBook
class. Adapted from the “refrep” class (part of the “refman v2.0e” package
by Kielhorn & Partl) to implement Wendy Priestly’s Instructional
typographies using desktop publishing techniques to produce effective
learning and training materials,
http://www.ascilite.org.au/ajet/ajet7/priestly.html.

http://www.usq.edu.au
http://www.sci.usq.edu.au
http://www.ascilite.org.au/ajet/ajet7/priestly.html

Table of Contents

Preface xi

1 Introduction 1

1.1 The Internet . 1

1.2 Protocols . 2

1.3 IP Addresses . 3

1.4 Domain Names . 4

1.5 Port Numbers . 5

1.6 Clients and Servers . 6

1.7 The World Wide Web . 7

1.8 Uniform Resource Identifier 7

1.8.1 Uniform Resource Locator 8

1.8.2 Legal Characters in URLs 8

1.8.3 URL Addressing . 8

1.9 Questions . 10

1.10 Further Reading and References 10

I Client Side 13

2 Extensible HyperText Markup Language 15

2.1 Introduction . 16

2.1.1 HTML, XHTML and XML 16

2.2 Structure of an XHTML document 17

2.2.1 Preamble . 18

2.2.2 HTML Element . 18

2.2.3 HEAD Element . 19

2.2.4 Common Attributes 23

2.2.5 BODY Element . 23

2.3 Block-Level Elements . 24

2.3.1 H1. . . H6 Elements . 24

iv Table of Contents

2.3.2 P Element . 26

2.3.3 PRE Element . 27

2.3.4 BLOCKQUOTE Element 28

2.3.5 ADDRESS Element 29

2.3.6 List Elements . 30

2.3.7 HR Element (horizontal rule) 34

2.3.8 Tables . 35

2.3.9 TABLE Element . 35

2.3.10 CAPTION Element 35

2.3.11 TR Element . 36

2.3.12 TH and TD Elements 36

2.3.13 Forms . 41

2.3.14 Frames . 41

2.4 Text-Level Elements . 51

2.4.1 Phrase Elements . 51

2.4.2 Subscripts and Superscripts 52

2.4.3 Document Modification 53

2.4.4 Font Elements . 55

2.4.5 Controlling Line Breaks 55

2.5 Embedded Images . 55

2.5.1 IMG Element . 55

2.5.2 Iframe . 56

2.6 Hypertext Links . 58

2.6.1 A Element . 58

2.7 Unicode . 59

2.8 Exercises . 60

2.9 Questions . 61

2.10 Further Reading and References 61

3 Cascading Style Sheets 63

3.1 Content and Style . 63

3.2 Accessibility . 64

3.3 Including Style Commands in (X)HTML 67

3.3.1 STYLE Element . 67

3.3.2 External Style Sheets 69

c© USQ, June 12, 2012

Table of Contents v

3.3.3 Importing Style Sheets 71

3.3.4 Inline Style . 71

3.4 Specifying Style Rules . 72

3.4.1 Selectors . 72

3.4.2 Precedence Rules . 75

3.4.3 Property URLs . 76

3.4.4 Property Units . 76

3.5 Font Properties . 78

3.6 Foreground and Background Properties 82

3.7 Text Properties . 86

3.8 Bounding Box Properties . 87

3.9 Box Positioning Properties . 92

3.9.1 Classification Properties 98

3.10 DIV and SPAN Elements . 98

3.11 Questions . 101

3.12 Further Reading and References 102

4 Graphics 103

4.1 Pixels and Colour . 103

4.2 Image Formats . 106

4.2.1 Raster Formats . 106

4.2.2 Vector Formats . 111

4.3 Images as Anchors . 117

4.3.1 Server-side Image Maps 118

4.3.2 Client-side image maps 120

4.3.3 Creating map descriptions 121

4.4 Questions . 122

4.5 Further Reading and References 122

5 Web Design 123

5.1 What is Web design? . 123

5.2 User-Centred Design . 124

5.2.1 Usability . 124

5.2.2 Common User Characteristics 126

5.2.3 Web Conventions . 134

c© USQ, June 12, 2012

vi Table of Contents

5.3 Accessibility . 134

5.4 Usability Guidelines . 137

5.4.1 Ten Good Design Ideas 137

5.4.2 Ten Bad Design Ideas 138

5.5 Questions . 140

5.6 Further Reading and References 141

6 PHP: Hypertext Preprocessor 143

6.1 Syntax . 144

6.1.1 Comments . 145

6.2 Variables . 145

6.2.1 Types . 145

6.2.2 True or False . 148

6.2.3 Strings . 148

6.2.4 Arrays . 151

6.3 Operators . 152

6.3.1 Arithmetic Operators 152

6.3.2 Assignment Operator 153

6.3.3 Comparison Operators 153

6.3.4 Ternary Operator . 154

6.3.5 Increment/Decrement Operators 154

6.3.6 Logical Operators . 154

6.3.7 Array Operators . 155

6.3.8 Operator Precedence 156

6.4 Conditional Statements . 156

6.4.1 if. . . elsif. . . else . 156

6.4.2 Switch . 158

6.5 Looping . 158

6.5.1 while . 158

6.5.2 do. . . while . 159

6.5.3 for . 159

6.5.4 foreach . 160

6.6 Functions . 160

6.6.1 Function Arguments 161

6.6.2 Variable Scope . 161

c© USQ, June 12, 2012

Table of Contents vii

6.7 File Handling . 162

6.7.1 C-style file handling 162

6.7.2 High-level file handling 163

6.8 Debugging Scripts . 164

6.9 Builtin Functions . 177

6.9.1 String Functions . 177

6.9.2 Array Functions . 178

6.9.3 File Functions . 180

6.9.4 Variable Handling Functions 181

6.9.5 Perl Regular Expression Functions 181

6.9.6 Error and Debugging Functions 182

6.10 Questions . 183

6.11 Further Reading and References 183

II Server Side 185

7 HyperText Transfer Protocol 187

7.1 Request Phase . 189

7.1.1 The Request Method 190

7.1.2 The Request Header 191

7.1.3 The Request Data . 194

7.2 Response Phase . 194

7.2.1 Response Status Codes 194

7.2.2 The Response Header 199

7.2.3 The Response Data 200

7.3 Questions . 200

7.4 Further Reading and References 201

8 Multipurpose Internet Mail Extensions 203

8.1 MIME types . 203

8.1.1 Base64 Encoding . 203

8.2 Content-type Header . 205

8.3 Servers and MIME typing . 206

8.4 Clients and MIME typing . 207

8.5 Questions . 208

c© USQ, June 12, 2012

viii Table of Contents

8.6 Further Reading and References 209

9 HTML Forms 211

9.1 The Form element . 211

9.2 Form Input elements . 212

9.2.1 <INPUT TYPE="TEXT"...> 212

9.2.2 <INPUT TYPE="PASSWORD"...> 213

9.2.3 <INPUT TYPE="CHECKBOX"...> 213

9.2.4 <INPUT TYPE="RADIO"...> 214

9.2.5 <INPUT TYPE="SUBMIT"...> 215

9.2.6 <INPUT TYPE="IMAGE"...> 216

9.2.7 <INPUT TYPE="RESET"...> 216

9.2.8 <INPUT TYPE="FILE"...> 217

9.2.9 <INPUT TYPE="HIDDEN"...> 218

9.3 SELECT element . 218

9.3.1 <OPTION...> . 219

9.4 TEXTAREA element . 220

9.5 Form Elements and CSS . 221

9.6 Questions . 221

9.7 Further Reading and References 222

10 Server Scripts and the Common Gateway Interface 223

10.1 Introduction . 223

10.2 Script Identification . 224

10.3 Communicating with Scripts 224

10.3.1 Passing Parameters . 225

10.3.2 Passing Path Information 226

10.3.3 HTML Input . 227

10.4 Communicating with Clients 231

10.4.1 Content-type . 231

10.4.2 Location . 233

10.4.3 Dynamic Documents 233

10.5 Common Gateway Interface (CGI) 234

10.5.1 Environment Variables 234

10.5.2 The GET method . 236

c© USQ, June 12, 2012

Table of Contents ix

10.5.3 The POST method . 237

10.6 Debugging Scripts . 237

10.7 Saving State Information . 238

10.7.1 Within Fill-out Forms 239

10.7.2 Within URLs . 239

10.7.3 Within Path Information 239

10.7.4 Using Authentication 240

10.7.5 Using Cookies . 240

10.8 Questions . 243

10.9 Further Reading and References 245

11 Server Configuration 247

11.1 Introduction . 247

11.2 Global Configuration Files . 248

11.3 Global Configuration Directives 249

11.3.1 The Root Directories 249

11.3.2 Virtual Document trees 250

11.3.3 User Directories . 251

11.3.4 AccessFileName directive 252

11.3.5 <Directory . . . > directive 252

11.3.6 <Location . . . > directive 253

11.3.7 AllowOverride directive 255

11.4 Directory Access Control Files 255

11.4.1 Options directive . 256

11.4.2 Redirection . 257

11.4.3 Directory Resources 258

11.4.4 ErrorDocument Directive 260

11.4.5 Encodings and Languages 261

11.4.6 Handlers . 263

11.4.7 Imap Files . 264

11.5 Questions . 265

11.6 Further Reading and References 266

c© USQ, June 12, 2012

x Table of Contents

12 Server Security 267

12.1 Introduction . 267

12.2 Insecure Server Features . 268

12.2.1 Automatic Directory Listing 268

12.2.2 Symbolic Links . 269

12.2.3 CGI Scripts . 270

12.2.4 User Directories . 270

12.2.5 Access Control Files 271

12.2.6 Log Files . 271

12.2.7 File Permissions . 271

12.3 Server Security Features . 272

12.4 Authorisation Features . 272

12.4.1 IP/Hostname Access Control 272

12.4.2 Configuring IP/Hostname Access Control 273

12.5 Authentication Features . 276

12.5.1 User Authentication 276

12.5.2 Configuring User Authentication 277

12.6 Communication Security . 282

12.6.1 Encryption . 283

12.6.2 Cryptographic Algorithms 283

12.6.3 Message Digest . 287

12.6.4 Digital Signatures . 288

12.6.5 Digital Certificates . 289

12.6.6 The Transport Layer Security Protocol 290

12.7 Questions . 291

12.8 Further Reading and References 291

c© USQ, June 12, 2012

Preface

Welcome to the course CSC2406, Web Technology. This course will cover:

• the Extensible HyperText Markup Language (XHTML). This is the
embedded language used to format static web pages.

• the HyperText Transfer Protocol (HTTP). This is the language which
allows communication between a web browser and a web server.

• MIME typing. This is the convention which allows the client to launch
the correct helper application or plug-in to process or display a file.

• server and client side image maps, JPEG, GIF and PNG image for-
mats. Image maps allow hyperlinks to be attached to various regions
of an image. When designing a site it is important to be aware of the
merits and disadvantages of the two main image formats.

• the XHTML Forms tag. Forms pages allow users to submit data to a
server.

• PHP scripts to process Forms input. These are the programs run by
the server to process the input data from a forms page.

• Server Configuration, that is, the various server options available when
constructing a website.

• Server Security, that is, how to keep a server secure but retain the flex-
ibility and access required for the Web. This will include the security
required for electronic commerce.

At the end of the course you should have a working knowledge of web client
and server interaction, how to configure a web server and how to administer
a server with varying security requirements.

To be able to develop the required technical expertise in Web Technology
you will be required to install and run a web server. The notes for this
course are written with a specific server and operating system in mind. As
all of the concepts developed and outlined in this ourse are applicable to all
servers and operating systems the choice of one server and operating system
should not be viewed as a restriction. Once you understand how one server
works, you pretty much understand them all.

This course is an introduction to the key concepts needed to be understood
if you wish to run and maintain your own web site.

c© 2010 Leigh Brookshaw
c©2003 Leigh Brookshaw and Richard Watson

Department of Mathematics and Computing, USQ

(This file created: June 12, 2012)

xii Preface

c© USQ, June 12, 2012

Chapter 1 Introduction

This module introduces the basic communication paradigm of the Internet.
The basic concepts of protocols, port numbers, IP addressing etc. is re-
quired to be able to understand the communication between a web client
and a web server.

Chapter contents
1.1 The Internet . 1

1.2 Protocols . 2

1.3 IP Addresses . 3

1.4 Domain Names 4

1.5 Port Numbers 5

1.6 Clients and Servers 6

1.7 The World Wide Web 7

1.8 Uniform Resource Identifier 7

1.8.1 Uniform Resource Locator 8

1.8.2 Legal Characters in URLs 8

1.8.3 URL Addressing 8

1.9 Questions . 10

1.10 Further Reading and References 10

1.1 The Internet

The Internet began in the late 1970’s as a research project of the United
States Department of Defense (D.O.D). The US military were experimenting
with wide-area networks to see if it was possible to link computers across
the US so that they could continue communicating with each other in the
advent of a nuclear war. This was desirable, as most of the early warning
systems and defense systems were becoming computerized in the 1970s.

In the mid 1980’s the Internet began a period of explosive growth as gov-
ernment agencies, academic institutions, private research laboratories and
corporations began to inter-connect their computers in a network that has
come to span the globe.

Although the World Wide Web in the minds of many people, has become
synonymous with the Internet, the two are quite distinct. The Internet is
a hierarchical conglomeration of connected networks. A network can be as
small as two machines connected together or as large as is convenient for
efficient communication. At the junction of networks there are dedicated
computers called routers. It is the routers job (among other things) to
decide how to get a piece of data from its source to its destination.

2 Chapter 1 Introduction

The novelty of the Internet is in its heterogeneity. The machines connected
to it range from personal computers to high speed supercomputers to de-
vices that are not normally viewed as computers at all, for example, print-
ers, mobile phones, tablets &c. The way devices are inter-connected are
also heterogeneous; they include wireless, optic fibers, micro wave links,
communication satellites, coaxial cables, copper wires, telephone lines &c.

1.2 Protocols

There is no point in connecting heterogenous computers if they cannot ex-
change information. The difficulty of interconnecting computers is they do
not all speak the same language.

The one thing that all parts of the Internet have in common is the protocol
they use to send information from one machine to another. The protocol
used is TCP/IP (Transfer Control Protocol/Internet Protocol). This lan-
guage (and grammar) specifies how two computers can find each other, how
they introduce themselves, and how they conduct a conversation. Using
TCP/IP any computer can contact any other computer on the Internet and
exchange data with it provided that

1. it knows the remote computer’s address, and

2. the remote computer is willing to talk.

The TCP/IP is a low level protocol, it is used to establish the link, set
up the line of communication and ensure the data arrives at the destina-
tion. TCP/IP has no knowledge of the contents of the data or of high level
structures. To TCP/IP all data is a linear stream of 8-bit bytes. To use an
analogy, the telephone company establishes the line of communication when
you dial a telephone number and ensures it remains open and all the data
(your voice) arrives at the destination. It is up to you, not the telephone
company, to ensure that the data you send is understandable at the other
end. That is, you both speak the same language! The TCP/IP will main-
tain the link and ensure the data arrives intact and in the correct order,
something else must ensure that the data has meaning.

Obviously it is useless to develop the infrastructure (the Internet, TCP/IP)
to link disparate computers if they find each others languages incomprehen-
sible. With the development of the physical infrastructure for the exchange
of data there was a corresponding development in high level data exchange
protocols.

One of the oldest, and still one of the most important protocols, is the Sim-
ple Mail Transfer Protocol (SMTP). This is the language used by different
computers to transfer electronic mail around the world. The protocol al-
lows computers to recognise mail messages, and pass the message onto the
recipient.

The program Telnet (and the protocol it uses) was developed to allow users
to connect to remote computers and log onto them (if they have a valid
account). From the remote machine they can interact with the computer as
if they were directly connected to it.

c© USQ, June 12, 2012

1.3 IP Addresses 3

The File Transfer Protocol (FTP) was developed to streamline the retrieval
of large files from file archives. If you know the name of the archive machine
FTP can be used to search the archive and retrieve the required files. Irre-
spective of the computer you use the commands used in the FTP protocol
are the same for getting files from and putting files onto a remote computer’s
file system.

The Network Time Protocol (NTP) was developed so that computers could
set their internal clocks by connecting to a computer that sets its time
from an atomic clock—in other words connect to a computer that possibly
has a more accurate idea of the correct time. Secure communication is
normally predicated on all machines having the correct time—accurate to
milliseconds.

There are many more protocols designed for a variety of useful tasks, (e.g.
Archie, Gopher, WAIS, finger, ph, &c.) some have been successful some
have not. One major difficulty of these protocols is that each required the
user to master a different piece of software, no two with the same interface1

1.3 IP Addresses

The telephone company assigns a unique telephone number to every tele-
phone. There are no two telephone numbers that are the same in the world
(remember a full telephone number incorporates the country code and area
code). The TCP/IP is the same, every machine on the Internet is assigned
a unique number, the IP address. IP addresses are 32-bit numbers that
are usually written out as four 8-bit numbers, separated by dots. There
are approximately 4 billion addresses available, which may seem sufficient,
unfortunately this is not the case. There are a number of reasons for this,

• there are reserved addresses for special purposes, such as multicasting.

• more importantly addresses are issued in contiguous blocks, not indi-
vidually.

The IP addressing is organised hierarchically in a series of networks and
subnetworks. Blocks of contiguous addresses are issued to organisations
and regional networks, who in turn issue sub-blocks of addresses. For ex-
ample the University of Southern Queensland has been issued the block of
addresses

139.86.1.1 to 139.86.255.255

Within this range blocks are allocated to different Faculties/Departments
by the University.

Organisationally, it’s simpler to give blocks of addresses to organisations
and allow those organisations to divide them up as they see fit. Technically,
it’s much easier for network routers to determine how to get data from
one address to another when the Internet is organised into a hierarchy of
networks and subnetworks.

1 The variety of interfaces required is not surprising. As some of the tasks are so different
similar interfaces would have been difficult. Also the interfaces had to be designed to
work on a variety of platforms most command line driven. Its only since the early 90’s
that Graphical User Interfaces (GUIs) have become ubiquitous.

c© USQ, June 12, 2012

4 Chapter 1 Introduction

The IP addressing system described here is known as IPv4, unfortunately
all IPv4 blocks have been issued (the last high level block was issued in mid
2011) there are no-longer any blocks available—this does not mean that all
IPv4 addresses are in use—they are not–it just means that all organisa-
tional level blocks of addresses have been assigned. The exhaustion of IPv4
addresses was recognised 15 years before the last block was assigned. The
addressing system IPv6 was proposed which uses 128-bit numbers—enough
addresses for the foreseeable future. IPv6 adoption has been slow—the
main constraint is replacing old network hardware across the world with
new hardware that recognises IPv6 addresing. With the exhaustion of IPv4
addresses the adoption of IPv6 addresing will accelerate.

1.4 Domain Names

The IP address is computer friendly but not people friendly. It is difficult
to remember and hard to type. For this reason, as well as an IP address
computers are also given a people friendly name. The names are assigned
using the distributed hierarchical lookup system known as Domain Name
System (DNS). In the DNS each machine has a unique name consisting of
multiple parts separated by dots (Not unlike IP addresses, except there is
no limit to the number of parts).

Table 1.1: The original Organizational Domain Names

Suffix Meaning

edu Educational Institutions
com Commercial Institutions
mil Military Establishments
net Network Provider
org Non-profit organization

The first part of a DNS name is the machine’s name, followed by an hi-
erarchical list of names. The first name is usually an identifier for the
department to which the machine belongs. The next is usually an identifier
for the organization as a whole. The next identifies the type of organization
and the last identifies the country2.

See Table 1.1 for a list of the original preferred organisational types.

The Mathematics and Computing web server is found on machine

www.sci.usq.edu.au.

The machine name is www, the department/faculty name is sci, the organ-
isation name is usq, the organisation type is edu and the country is au.

2 Only the United States did not require a country code. As the system was developed
in the US a country code was never required it had to be added later as the Internet
expanded beyond the US borders.

Compare this with the postal service. The United Kingdom is the only place that
does not have the country name on its postage stamps. This is because the postal
system was developed in the UK and the need for a country identification was required
only when the service went beyond country borders.

c© USQ, June 12, 2012

1.5 Port Numbers 5

See Table 1.2 for some examples of country codes. For a complete list of
country codes refer to the ISO 3166 country code list in the course resources
directory.

Table 1.2: Some two letter country codes

Code Country

au Australia
uk United Kingdom
ch Switzerland
jp Japan
de Germany

This hierarchical list of domain names has broken down as commercial in-
terests have begun to dominate the Internet. Companies prefer short and
easily remembered domain names and are not willing to accept the existing
convention. Therefore you will find domain names that do not follow any
convention—as of mid-2012 high level domain types can be purchased by
any organisation with the money.

An important feature of the DNS is that a single machine can have one or
more aliases assigned to it in addition to its true name. This feature is
widely used to give descriptive names to server machines. For example the
Department of Mathematics and Computing at USQ maintains both a web
server and an FTP server. The address for the web server is

www.sci.usq.edu.au,

the address for the FTP server is

ftp.sci.usq.edu.au.

Both names resolve to the same IP address and neither is the machine’s true
name.

1.5 Port Numbers

When two processes on different computers wish to communicate with each
other it isn’t enough that they know each others IP addresses. They need
a mechanism to be able to rendezvous. As a single machine runs multiple
processes and supplies multiple services, an external process needs a mech-
anism to be able to specify the process it wishes to communicate with on a
remote machine.

The mechanism used is port numbers. The IP address identifies the machine,
the port number identifies the particular process on the remote machine.
Ports are identified by a number from 0 to 65,535. Any process that wishes
to use a port tells the machine it is running on, to reserve a particular port
for its exclusive use. Any external process requesting communications with
a port can only talk to the process that has reserved the port. The external
process does not need to know the name of the local process only the port
number it expects it to be listening on.

Well known ports are those that by convention, have been reserved for use
by particular services. Table 1.3 lists some of the reserved ports. Ports 0

c© USQ, June 12, 2012

http://www.sci.usq.edu.au/courses/CSC2406/semester2/resources/iso3166.html

6 Chapter 1 Introduction

to 1023 have been reserved for internet services, all other ports are freely
available for anyone to use3.

Table 1.3: Some common reserved port numbers and the service that uses
the port.

Port Service

22 SSH
23 Telnet
80 HTTP
110 POP3
123 NTP
20 FTP data
21 FTP control
25 SMTP

1.6 Clients and Servers

To establish a communications link between two processes (either on the
same machine or on different machines) one process must initiate a connec-
tion and the other must accept it. This is accomplished using a server/client
scheme.

Server When the server starts up it signals the operating system that it is
willing to accept connections on a given port. It then waits for the
connections. The server starts running first.

Client When a client needs to send information to the server or retrieve infor-
mation from the server it opens a connection to the known port, and
passes information back and forth. When finished the client closes the
connection.

Most servers can handle multiple simultaneous incoming connections. They
do this by either replicating themselves in memory when a new connection is
requested or by cleverly interleaving their communication activity amongst
the clients.

The distinction between client and server rests on who initiates the connec-
tion and who accepts it. Although the server is normally the information
provider this is not always the case. However, it is generally true that the
client interacts with the user, processing keystrokes and displaying results.
The user interacts with the server through the client, never directly.

Exercise 1.1: A simple and informative way to learn about any protocol
is to connect to a server using the telnet program and talk to the
server directly.

Experiment connecting to mail servers by connecting to port 25

For example try the following command

telnet www.sci.usq.edu.au 25

3 On Unix systems ports 0 to 1023 are reserved for services controlled by the superuser.

c© USQ, June 12, 2012

1.7 The World Wide Web 7

This command directs telnet to connect to www.sci.usq.edu.au

using the SMTP port 25.

This command assumes you are using a Unix system, but any system
running telnet that allows you to specify the port should work. After
you have connected try the command

EHLO machine-name

where machine-name is your machine’s name.

What happens?

To exit type QUIT

An alternative address to try if the one above fails is your ISP’s mail
server.

1.7 The World Wide Web

In 1989, Tim Berners-Lee4 and his associates at CERN, the European par-
ticles physics center, proposed the creation of a new information system
called “WorldWideWeb”. The system was designed to aid the CERN scien-
tists with disseminating and locating information on the Internet. Particle
physics projects are such huge collaborative efforts that a system was needed
to unify all the fragmented information services and file protocols into a sin-
gle point of access.

Instead of having to invoke different programs to retrieve information via
different protocols, users would be able to use a single program, called a
browser, with a single user interface, that would understand the various
protocols. The browser had the task of figuring out how to fetch the infor-
mation and display it.

A central part of the proposal was to use a hypertext metaphor: information
would be displayed as a series of resources. Related resources would be
linked together by specially tagged words, phrases and images. By selecting
one of these hypertext links the browser would download the resource even
though it is on a different machine and accessed through a different protocol.

The turning point for the Web occurred in 1993, when the U.S. National
Center for Supercomputing Applications (NCSA) released its web browser
Mosaic. This browser used icons, pop up menus, rendered bit mapped text,
displayed images, used color links to display hypertext links and provided
support for sounds, animations, and other types of multimedia.

1.8 Uniform Resource Identifier

The Uniform Resource Identifier or URI is an abstract standard system
for identifying resources on the Internet. There are currently two types of
URI’s: the Uniform Resource Locator (URL) and the Uniform Resource
Name (URN). In this course we will be interested in URLs only5.

4 Tim Berners-Lee is currently the head of the World Wide Web Consortium. The body
designed to oversee and direct the future evolution of the Web.

5 The URN system implements a name server mechanism similar to DNS name servers.
A URN is a permanent name for a resource that never changes. The server would

c© USQ, June 12, 2012

8 Chapter 1 Introduction

1.8.1 Uniform Resource Locator

A Uniform Resource Locator is a way to tell a browser how and where to
find an item of interest on the Internet. The URL is a straightforward way
(see table 1.4) to indicate the retrieval protocol, host, and location of an
Internet resource.

Table 1.4: The anatomy of an URL.

http://www.sci.usq.edu.au:80/courses/CSC2406/index.html

http www.sci.usq.edu.au 80 courses/CSC2406 index.html
protocol host port path resource

The first part of the URL (delimited by the colon) specifies the communi-
cation protocol, eg. http, ftp, news, mailto, gopher, telnet. If the protocol
is omitted then a web browser assumes http. The second part, beginning
with the double slash and ending with the single slash is the name of the
host machine on which the resource resides. An optional port number can
be specified but it is only required if the remote server has been configured
to use a nonstandard port. The rest of the URL is the path to the resource.
The path format is different depending on the protocol used.

1.8.2 Legal Characters in URLs

Only some characters are permitted within URLs. Alphanumeric (ie upper-
and lowercase letters and numerals) and the characters $ @,- are all legal.
The characters =;/#?:%&+ and the space character are also legal but have
special meanings (eg. the : is used to delimiter the port number). ALL
other characters, symbols etc. are illegal.

To include special characters without their special meaning or to include
illegal characters in a URL they must be escaped, using an escape code.
The escape code consists of the % character followed by the two-digit hex-
adecimal code of the character. For example, a carriage return can be placed
into a URL using the escape sequence %0D, a space is escaped to %20, and
the percent sign by %25. The character codes used in a URL are the ASCII
character codes (see the ASCII character codes in the course resources di-
rectory) and the 8-bit superset, ISO Latin-1 (see the Latin-1 page in the
course resources directory).

An example of using escape codes in a URL:

/courses/CSC2406/Welcome%20Page.html

1.8.3 URL Addressing

There are two types of URLs, absolute and relative. An absolute URL
contains all the information necessary to locate the resource. For instance

return the actual location of the resource derived from the URN.
Obviously URN’s would only be used for resources that would be permanent, that

is the resource would always exist but its location might change.

c© USQ, June 12, 2012

http://www.sci.usq.edu.au/courses/CSC2406/semester2/resources/ascii.html
http://www.sci.usq.edu.au/courses/CSC2406/semester2/resources/latin1.html

1.8 Uniform Resource Identifier 9

the following are absolute URLs

http://www.sci.usq.edu.au/courses/CSC2406/index.html

www.sci.usq.edu.au/courses/CSC2406/closed/Changes.html

www.usq.edu.au/library/

Though the last two did not specify the protocol the web client will assume
http.

In the above examples the machine address, the path and the resource were
all specified. Given this information you know exactly where the resource
is located, or more importantly the web browser does. What about the
following valid URLs

/courses/index.html

../closed/Changes.html

appendix/ascii.html

How does the web browser know where to look for the resources since the
addresses are incomplete? The browser must assume the URL is relative to
the current resource to fill in the blanks.

The current resource is the resource that contains the relative URLs. For
example, if you download the HTML page

http://www.sci.usq.edu.au/courses/CSC2406/sb/index.html

and it contains the relative URLs above, they are interpreted as having the
following absolute URLs:

http://www.sci.usq.edu.au/courses/index.html

http://www.sci.usq.edu.au/courses/CSC2406/closed/Changes.html

http://www.sci.usq.edu.au/courses/CSC2406/sb/appendix/ascii.html

The leading slash of the relative URL /courses/index.html, implies that
this URL is missing only the machine name. The leading double dots of the
relative URL ../closed/Changes.html, has the same meaning as in Unix,
go up to the parent directory first then down into the directory closed.

Note Only relative links not beginning with a / (slash) can be used in assign-
ments for this course. Your assignments will be placed in a different
directory on a different server and machine than the one they were
written on — only relative URLs not starting with a slash will not
break.

Exercise 1.2: After installing your own web server, experiment with cre-
ating documents containing absolute and relative links.

c© USQ, June 12, 2012

10 Chapter 1 Introduction

You will need to know how to specify relative links for the Assign-
ments.

1.9 Questions

Short Answer Questions

Q. 1.3: Explain the difference between the Internet and the World Wide
Web.

Q. 1.4: In what way is the Internet heterogeneous?

Q. 1.5: Why is the heterogeneity of the Internet novel?

Q. 1.6: What is a protocol

Q. 1.7: What is TCP/IP? (and I don’t mean the definition of the acronym).

Q. 1.8: What is FTP? Why is it necessary to create such a protocol?

Q. 1.9: Describe the advantages of organizing the Internet into a hierarchy
of networks and subnetworks. (Why are telephone numbers organized
this way?)

Q. 1.10: Explain the difference between a computer’s IP address and its
domain name.

Q. 1.11: How is a relative URL different from an absolute URL?

Q. 1.12: Why is it convenient to allow machines to have more then one
domain name?

Q. 1.13: Describe the Server-Client method of creating a communication
link between two computers.

Q. 1.14: What distinguishes a Server from a Client?

Q. 1.15: Which process does the user usually interact directly with, the
Server or the Client?

Q. 1.16: Explain why Port numbers are required and how they are used.

Q. 1.17: When a process listens on a port what does this mean? What
does this tell you about the listening process?

Q. 1.18: Describe the hypertext metaphor.

Q. 1.19: Using the URL of this document describe its different parts.

Q. 1.20: What are escaped characters in a URL.

1.10 Further Reading and References

• The definition of URI’s, URL’s and URN’s can be found at the World
Wide Web Consortium page

http://www.w3.org/Addressing/

on addressing resources.

c© USQ, June 12, 2012

http://www.w3.org/Addressing/

1.10 Further Reading and References 11

• The ASCII character codes can be found in the course resources di-
rectory.

• The ISO Latin-1 character codes can be found in the course resources
directory.

c© 2010 Leigh Brookshaw
c©2005 Leigh Brookshaw and Richard Watson

Department of Mathematics and Computing, USQ

(This file created: June 12, 2012)

c© USQ, June 12, 2012

http://www.sci.usq.edu.au/courses/CSC2406/semester2/resources/ascii.html
http://www.sci.usq.edu.au/courses/CSC2406/semester2/resources/latin1.html

12 Chapter 1 Introduction

c© USQ, June 12, 2012

I. Client Side

14

c© USQ, June 12, 2012

Chapter 2 Extensible HyperText Markup Language

This module presents an overview of the Extensible HyperText Markup
Language (XHTML). XHTML is a variant of HTML (HyperText Markup
Language) that uses the syntax of XML, the Extensible Markup Language.
XHTML has all the same elements as HTML 4.0, but with a slightly stricter
syntax.

Examples, of XHTML documents can be found in the examples directory
for this module on the course web site.

This module is not a reference manual, the XHTML elements and attributes
discussed here are not complete, but the main elements of the language are
covered.

Chapter contents
2.1 Introduction . 16

2.1.1 HTML, XHTML and XML 16

2.2 Structure of an XHTML document 17

2.2.1 Preamble . 18

2.2.2 HTML Element 18

2.2.3 HEAD Element 19

2.2.4 Common Attributes 23

2.2.5 BODY Element 23

2.3 Block-Level Elements 24

2.3.1 H1. . . H6 Elements 24

2.3.2 P Element . 26

2.3.3 PRE Element 27

2.3.4 BLOCKQUOTE Element 28

2.3.5 ADDRESS Element 29

2.3.6 List Elements 30

2.3.7 HR Element (horizontal rule) 34

2.3.8 Tables . 35

2.3.9 TABLE Element 35

2.3.10 CAPTION Element 35

2.3.11 TR Element . 36

2.3.12 TH and TD Elements 36

2.3.13 Forms . 41

2.3.14 Frames . 41

2.4 Text-Level Elements 51

2.4.1 Phrase Elements 51

2.4.2 Subscripts and Superscripts 52

2.4.3 Document Modification 53

2.4.4 Font Elements 55

http://www.sci.usq.edu.au/courses/CSC2406/semester2/sb/examples/xhtml/index.html

16 Chapter 2 Extensible HyperText Markup Language

2.4.5 Controlling Line Breaks 55

2.5 Embedded Images 55

2.5.1 IMG Element 55

2.5.2 Iframe . 56

2.6 Hypertext Links 58

2.6.1 A Element . 58

2.7 Unicode . 59

2.8 Exercises . 60

2.9 Questions . 61

2.10 Further Reading and References 61

2.1 Introduction

The (X)HTML is a mark up language designed to allow the author to format
information to be displayed by a web browser. The term mark up means
that the formatting commands of the language are embedded explicitly in
the text to be displayed.

In the (X)HTML the mark up elements embedded in the text are called tags.
The mark up elements inserted in the text are ordinary ASCII characters
(keyboard characters). This means that an ordinary text editor can be used
to create (X)HTML documents.

To distinguish the (X)HTML elements from the text that is to be displayed,
all (X)HTML elements are delimited by angle brackets. For instance, the
command <title> is the starting tag for the document title element. The
text within angle brackets is not displayed by the browser. The browser tries
to interpret, as HTML commands, all text found between angle brackets.

(X)HTML elements can also have attributes. Attributes are used to modify
the behaviour of the element or supply the element with necessary informa-
tion. For example, <table id="data"> is the (X)HTML tag, table is the
(X)HTML element (begin a table), and id is the element attribute (optional
in this case). Another (X)HTML tag example is,

where img is the element, src is the attribute and images/usq.png is the
value of the attribute. This attribute is not optional.

Attributes that modify the behaviour of an element (this means most at-
tributes) should be avoided. The correct way to modify the browser’s de-
fault behaviour when interpreting (X)HTML markup is to use “Style Com-
mands”. Style commands will be discussed in detail in the next module.

2.1.1 HTML, XHTML and XML

HTML has been the language of the Web since its inception—why create a
new language—XHTML? One of the the reasons that the Web grew expo-
nentially in the nineties is the simplicity of HTML and the fact that browsers
will interpret and display any HTML no-matter how badly written. This
means that there are a lot of badly written HTML pages on the Web—in
fact most of them. When the Web was young this loose approach to HTML
helped the Web grow—but now that the Web is mature and there is an
awful lot of data out there a loose interpretation of HTML has problems.

c© USQ, June 12, 2012

2.2 Structure of an XHTML document 17

For instance, it is extremely difficult to parse HTML documents because
they are not consistent—this means

• That HTML pages with errors can be displayed very differently in
different browsers. Each browser interprets errors in its own way.
This means—

• It is very difficult to mine data from the billions of HTML pages
because the language is not consistent. The HTML authors did not
realise the pages had errors because the browser they used displayed
what they expected to see.

The Extensible Markup Language (XML) is a meta-language for describing
markup languages. That is, XML provides a basic structure and a set of
rules to which a markup language can adhere.

XHTML tries to redress the problems of HTML by enforcing the basic
syntax rules of an XML language. These rules are:

• XHTML documents must be well formed—a browser should not dis-
play a document that is not well formed. (Unfortunately in prac-
tice browsers still try and guess what you meant with your broken
XHTML.)

• Element and attribute names must be lowercase.

• End tags are required for non-empty elements.

• Empty elements must consist of a start-tag/end-tag pair or use the
shorthand empty element notation. For example, for a horizontal rule
<hr /> is a shorthand alternative to <hr></hr>, and for a line break

 is a shorthand alternative to
</br>

• Attribute values must always be quoted either using single quotes (’)
or double quotes ("). Quotes must appear in pairs—start with a single
quote finish with a single quote.

• Attributes cannot be used without a value.

• An XHTML namespace must be declared in the root html element.
(See below for further explanation.)

• The head and body elements cannot be omitted. (See below for further
explanation.)

• The title element must be the first element in the head element.
(See below for further explanation.)

Activity 2.A All the examples in this module can be found on the course web site.
Study the examples and how they are rendered by your browser. All
examples in this course have been tested under Firefox only.

2.2 Structure of an XHTML document

An XHTML document is composed of 3 parts

1. a line containing the XHTML version information,

2. a header section delimited by the head element,

c© USQ, June 12, 2012

18 Chapter 2 Extensible HyperText Markup Language

3. a body, which contains the document’s actual content. The body may
be delimited by the body element or the frameset element.

Example 2.1: Here is an example of a simple XHTML document, with
all the required XHTML elements.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE HTML PUBLIC

"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

<head>
<title>Minimalist XHTML document</title>
</head>
<body>
Hello World!

</body>
</html>

2.2.1 Preamble

The line

<?xml version="1.0" encoding="UTF-8"?>

tells any parser1 processing this document that what follows is a document
that conforms to the XML specification for mark-up languages.

The DOCTYPE statement tells the parser the vocabulary and grammar this
XML document will be using. In this case we are specifying “XHTML 1.0
Strict”, as defined by the Web Consortium (W3C). The Strict means the
document strictly conforms to the XHTML specification. The URL http://

www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd is the Document Type
Definition or the document that describes the vocabulary and grammar of
strict XHTML. An alternative document type is

<!DOCTYPE HTML PUBLIC

"-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

a looser definition of XHTML — used as a transitional definition from
HTML to strict XHTML.

2.2.2 HTML Element

Attributes: (required element),
xmlns (required attribute),
lang (required attribute),
xml:lang (required attribute)

The XHTML document proper is defined by the <html>...</html> pair—
all XHTML markup in the document must be found between these tags.
They must be the first and last HTML tags in the document.

1 Your web browser must first “parse” your XHTML page before displaying it. That is,
the syntax must be analysed and understood before it can be displayed.

c© USQ, June 12, 2012

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

2.2 Structure of an XHTML document 19

The attribute xmlns defines the XML namespace of all the elements and
attributes in the document. In Example 2.1 the namespace is declared
as http://www.w3.org/1999/xhtml. Namespaces are used in XML docu-
ments to ensure that parsers don’t get confused in documents that contain
multiple XML languages—different languages may use the same element
name for completely different actions. In this course we will be using two
XML languages—XHTML, and possibly SVG. The namespace is used to
distinguish between the two different languages.

Example 2.2: In MS-Windows namespaces are used to distinguish files
on different volumes. For example, consider the following file paths

H:\CSC2406\HTML\index.htm

K:\CSC2406\HTML\index.htm

Though the path to the file is identical they are interpreted as differ-
ent files because the namespaces are different (they are on different
volumes).

The attribute lang specifies the language in the document for an
XHTML parser and the attribute xml:lang specifies the language
in the document to a generic XML parser (the attribute xml:lang

is specified in the xml namespace which is different to that declared
with the xmlns attribute.)

2.2.3 HEAD Element

Attributes: (required element)

The head section is the first main section of an XHTML document.
It contains information for the server and the client and its contents
will not be displayed by the web client in the web page.

TITLE Element

Attributes: (required element)

The title element can only be contained within a head section and is
required to be in all XHTML documents. The title element specifies
the title of the document. This title is normally displayed by the web
browser in the frame title of the browser window. It is the only element
in the head section to be displayed anywhere.

BASE Element

Attributes: href (required attribute)

The base element is used to specify the base URL of all relative URLs
in the document. Without a base element all incomplete URLs or
relative URLs are completed using the document’s URL. The base

element overrides this default behaviour.

Example 2.3: An example of using the base element.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE HTML PUBLIC

c© USQ, June 12, 2012

20 Chapter 2 Extensible HyperText Markup Language

"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

<head>
<title>Using the BASE element</title>
<base href="http://www.sci.usq.edu.au/courses/CSC2406/" />
</head>
<body>
As there is a <code>base</code> element in this document
all relative URLs in this document
are completed using the <code>base</code> element
<code>href</code> attribute.
For example the link index.html
will load document
<p>
<code>http://www.sci.usq.edu.au/courses/CSC2406/index.html</code>
</p>

</body>
</html>

The relative URL index.html will be mapped to the absolute
URL

http://www.sci.usq.edu.au/courses/CSC2406/index.html

irrespective of the location of the document containing the link.

Note This element should rarely be used if ever. It should never be
used in any submitted pages in this course as it will break relative
URLs and effectively make your assignment unviewable.

META Element

Attributes: name, content, http-equiv

The meta element can be used to include name/value pairs describing
properties of the document, such as the author, expiry date, keywords
describing the content, the program that generated the document etc.

The name attribute specifies the property name, such as author (per-
son who wrote the document), description (brief summary), keywords
(keywords to be used by search engines), generator (program that
generated the document). The exact way the meta element and prop-
erty names are interpreted is system dependent.

Example 2.4: An example of using the meta element with the name
and content attributes.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE HTML PUBLIC

"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

<head>
<title>Using the "meta" element</title>
<meta http-equiv="Pragma" content="no-cache" />

c© USQ, June 12, 2012

2.2 Structure of an XHTML document 21

<meta name="author" content="Leigh Brookshaw" />
<meta name="keywords"

content="HTML tutorial USQ example
university academic studybook" />

<meta name="description"
content="Example HTML document

illustrating the META tag" />
</head>
<body>
How the <code>meta</code> tag is used by either the
web server or the web browser is system dependent.

</body>
</html>

The name attribute can be replaced with the http-equiv attribute. In
this case, if the document is retrieved via HTTP, the HTTP server is
supposed to to use the http-equiv and content attributes to generate
an HTTP header (see the HTTP Module 7 for a discussion of HTTP
headers).

A quick example, the following META tag

<meta http-equiv="Expires"
content="Tue, 20 Aug 2010 14:25:27 GMT">

results in the following HTTP header being added to the document

Expires: Tue, 20 Aug 2010 14:25:27 GMT

Note: Some browsers support the non standard use of the meta tag
to refresh the current page after a specified number of seconds, with
the option of replacing it with a different URL. This technique should
not be used to forward users to different pages, as this makes the
pages inaccessible to some users. Instead, automatic page forwarding
should be done using server redirects (see section 7.2.2).

LINK Element

Attributes: href, rev, rel

The link element is not widely used, but is intended to provide in-
formation on how the current document fits into a larger set of doc-
uments by specifying a table of contents location, the previous and
next documents in the series, an advisory title, etc. The idea is that
the rel attribute gives the relationship of the document specified by
the href attribute, to the current document. The attribute rev gives
the reverse relationship. The most common types of relationships are
contents, index, help, glossary, next, previous. For example:

<link rel=’Contents’ href="toc.html" />
<link rel=’Previous’ href="doc31.html" />
<link rel=’Next’ href="doc33.html" />
<link rel=’Stylesheet’ href="site.css" />

An important rel attribute keyword we will be using is the stylesheet
keyword, which can be used to refer to an external style sheet. See

c© USQ, June 12, 2012

22 Chapter 2 Extensible HyperText Markup Language

section 3 for further information on style sheets and the use of the
link element.

Comments

Comments can be added to any XML document by surrounding the
comment text with the begin comment, end comment tags. The begin
comment tag is <!--, the end comment tag is -->. Any text between
these two tags will be ignored by the browser.

Example 2.5: An example of using XML comments.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE HTML PUBLIC

"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

<head>
<title>Using XML comments</title>
</head>
<body>
Comments can be imbedded in a
an XHTML document and they will
not be displayed by the browser.
<!-- One use of comments is to annotate a page -->
Another use of comments is to comment out text
and HTML commands without removing them from the
document.
<!--

<p>
This can be convenient when in the process
of modifying a document. A way of testing ideas.
</p>

-->
XHTML Commands are ignored within comments.
<p>
The comments on this page can be seen by viewing
the source code of the page. In Firefox/Iceweasel
use Ctrl-u to view source.
</p>

</body>
</html>

Activity 2.B There are many (X)HTML WYSIWIG composers, unfortunately
all produce appalling (X)HTML. In this course all exercises and
assignments must be written using a normal text editor or at
most a tag editor. This way you will hopefully become familiar
the XHTML language and its limitations.

Tag editors are smart text editors that can supply XHTML tag
templates, that way you do not have to remember all the at-
tributes of an elements. The editor will supply you with a list.

Under Linux, bluefish is one XHTML tag editor.

Under Windows, notepad++ is a good syntax aware editor—
though not a “tag” editor.

c© USQ, June 12, 2012

2.2 Structure of an XHTML document 23

Become familiar with the text editor of your choice and become
comfortable writing XHTML by hand.

2.2.4 Common Attributes

The elements that make up the body of the document, beginning
with the body element, have a number of common attributes. These
attributes serve the same purpose in every element they are found.

title

This attribute supplies advisory information about an element and
may be rendered by the browser as a pop-up “tool tip”.

style

This attribute specifies the “style” commands for the element. That
is, style commands that change the default look of the element. See
the CSS Module §3.

id

This attribute assigns a name to an element. The assigned name must
be unique in the document. The unique identifier is used as a selector
for style commands. This selector means that style commands will
only be applied to this element and no no other. See the CSS Module
§3.

This attribute can also be used on any element as an address for a
URL. See §2.6.1 and the NAME attribute of the ANCHOR element.

class

This attribute assigns a class name or set of class names to an ele-
ment. Any number of elements may be assigned the same class name
or names. Multiple class names must be separated by white space
characters. This selector means that style commands will be applied
to all elements with this class name. See the CSS Module §3.

All the above attributes are optional.

2.2.5 BODY Element

XHTML documents should have exactly one body element defining
the main contents of the page. The only exception is a document that
uses frames (see section 2.3.14).

The body element contains two major classes of XHTML elements.
The block-level elements format a “block” or paragraph of text (see
§2.3), and the text-level elements are used for formatting words and
characters in the text (see §2.4). Block level elements can be nested
and can contain text level elements, which can also be nested. Text
level elements cannot contain block level elements. Block level ele-
ments include headings, paragraphs, lists, tables, forms and horizontal

c© USQ, June 12, 2012

24 Chapter 2 Extensible HyperText Markup Language

rules. Text level elements include hypertext links, embedded images,
and image maps.

The only attribute that should be used with the body element is the
title attribute.

2.3 Block-Level Elements

Block-level elements format text “blocks” that appear in the body

portion of an XHTML document. Block-level elements can contain
other block-level elements as well as text-level elements, while text-
level elements are used within paragraphs of text and thus can only
contain other text-level elements.

The default style of block-level elements is to span the entire width of
the rendered page.

2.3.1 H1. . . H6 Elements

h1 through h6 are used for document headings, with h1 indicating
the top level section heading, h2 the first-level subheading, h3 the
second-level subheading and so on.

Most browsers render headings in a bold face, with h1 the largest and
h6 the smallest. The smaller headings (h5 and h6) should be used
with caution. Depending on the browser being used and the user’s
selection of font sizes, the minor headings may be rendered smaller
than the default paragraph text.

Headings are left aligned by default, but centred or right aligned head-
ings can be created by using style commands, modifying the default
style.

Example 2.6: An example of the header elements h1. . . h6.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE HTML PUBLIC

"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

<head>
<title>Example of header elements</title>
</head>
<body>
Samples of the 6 headings using the default style
<h1 title="Main heading">H1 heading</h1>
<h2 title="Sub heading">H2 heading</h2>
<h3>H3 heading</h3>
<h4>H4 heading</h4>
<h5>H5 heading</h5>
<h6>H6 heading</H6>
</BODY>
</HTML>

Figure 2.1 shows the rendered page.

c© USQ, June 12, 2012

2.3 Block-Level Elements 25

Figure 2.1: One possible rendering of Example 2.6.

c© USQ, June 12, 2012

26 Chapter 2 Extensible HyperText Markup Language

Figure 2.2: One possible rendering of Example 2.7.

2.3.2 P Element

The p element designates basic paragraphs, resulting in a section of
text with blank space above and below.

By default paragraphs are aligned left with a ragged right margin.
This default behaviour can be modified with style commands.

Example 2.7: An example of the paragraphs.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE HTML PUBLIC

"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

<head>
<title>Example of paragraphs</title>
</head>
<body>
<h1>The Metamorphosis</h1>
As Gregor Samsa awoke one morning from uneasy
dreams he found himself transformed in his bed
into a gigantic insect.
<p>
He was lying on his hard, as it were armour-plated,
back and when he lifted his head a little he could
see his dome-like brown belly divided into stiff
arched segments on top of which the bed quilt could
hardly keep in position and was about to slide off
completely.
</p>
<p>
His numerous legs, which were pitifully thin compared
with the rest of his bulk, waved helplessly before
his eyes.

c© USQ, June 12, 2012

2.3 Block-Level Elements 27

Figure 2.3: One possible rendering of Example 2.8.

</p>
<p style="text-align: right;">
The Metamorphosis Franz Kafka
</p>
</body>
</html>

Figure 2.2 shows the rendered page.

2.3.3 PRE Element

This element indicates a preformatted paragraph that maintains the
white space from the source document and uses a fixed width font.
Images and elements that change the font size are not allowed inside
a pre container. Although the indentation, blank lines, extra spaces
and newlines are maintained, XHTML commands that do not change
the font size are interpreted. This means that the pre element will
not, by itself, be able to display XHTML code uninterpreted.

Example 2.8: An example of the pre element.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE HTML PUBLIC

"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

<head>
<title>The Rage of Achilles</title>
</head>
<body>
<h1>The Iliad

by Homer</h1>
<h3>The Rage of Achilles</h3>
<pre style="color: #040088">
Rage—Goddess, sing the rage of Peleus’ son Achilles,
murderous, doomed, that cost the Achaeans countless losses,
hurling down to the House of Death so many sturdy souls,

c© USQ, June 12, 2012

28 Chapter 2 Extensible HyperText Markup Language

Figure 2.4: One possible rendering of Example 2.9.

great fighters’ souls, but made their bodies carrion,
feasts for the dogs and birds,
and the will of Zeus was moving to its end.
Begin, Muse, when the two first broke and clashed,
Agamemnon lord of men and brilliant Achilles.
</pre>
<p style="text-align: right;">
Translated by Robert Fagles
</p>
</body>
</html>

Figure 2.3 shows the rendered page.

2.3.4 BLOCKQUOTE Element

Attributes: cite

This element is intended for large quotations from other works. It is
often rendered indented, but this is not required. Relying on the web
client to indent both left and right margins could be dangerous.

The value of the cite attribute is a URL that designates a source
document or information about the source.

Example 2.9: An example of the blockquote element.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE HTML PUBLIC

"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

c© USQ, June 12, 2012

2.3 Block-Level Elements 29

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

<head>
<title>Titus Groan</title>
</head>
<body style="color:#00156E">
<h1>Titus Groan by Mervyn Peak</h1>
<h3>Introduction by Anthony Burgess</h3>
The middle of the late nineteen-forties saw the the
appearance of a number of British works of literature
which were quick to assume the status of ’classics’
- meaning eloquent, authoritative, definitive
statements begotten by an epoch but speaking far more
than that epoch...
<blockquote cite="http://www.mervynpeake.org
style="colour: #006E29">

Gormenghast, that is, the main massing of the original
stone, taken by itself would have displayed a certain
ponderous architectural quality were it possible to have
ignored the circumfusion of those mean dwellings that
swarmed like an epidemic around its outer wall.
</blockquote>
<p style="text-align: right">
from Titus Groan by Mervyn Peak
</p>
<p>
One book, however, resisted and still resists the
shelling-out of a central sermon or warning. The world
created in Titus Groan is
neither better nor worse than this one:
it is merely different.
</p>
</body>
</html>

Figure 2.4 shows the rendered page.

2.3.5 ADDRESS Element

The address element specifies information such as authorship and
contact details for the current document. It should be rendered with
paragraph breaks before and after. It usually appears at the top or
bottom of the document. Most browsers render the text within the
container using an italic font. The browser will wrap the text within
the container so line breaks must be explicitly defined (see the Line
Break element 2.4.5) if required.

Example 2.10: An example of the ADDRESS element.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE HTML PUBLIC

"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

<head>
<title>The “address&rdquo: element</title>

c© USQ, June 12, 2012

30 Chapter 2 Extensible HyperText Markup Language

Figure 2.5: One possible rendering of Example 2.10.

</head>
<body>
<h1>The “address&rdquo element</h1>
An example of an address using the
<code>address</code> element is:
<p>
<address>
Web Administrator

Department of Mathematics and Computing

University of Southern Queensland

Toowoomba, 4350, Australia
</address>
</p>
</body>
</html>

Figure 2.5 shows the rendered page.

2.3.6 List Elements

There are a number of commands in XHTML for constructing lists.
There are “unordered” lists, “ordered” lists, and “descriptive” lists.
Lists can be nested and can appear in table cells.

OL Element

The ol element is used to create ordered, or numbered lists. Style
commands allow the author to change the numbering style—Arabic,
Roman etc., starting numeral, indentation etc.

The default style for numbering is Arabic, which changes depending
on the nesting of the ordered list. The default numeral styles are,
in order, Arabic, lower Alpha, upper Alpha, lower Roman and upper
Roman.

LI Element

The li element specifies the individual “list items” in the list. It
can contain most other block level elements except for headings and

c© USQ, June 12, 2012

2.3 Block-Level Elements 31

Figure 2.6: One possible rendering of Example 2.11.

address elements.

Example 2.11: An example of the nesting the ol element.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE HTML PUBLIC

"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

<head>
<title>Example of "ol" and "li" elements</title>
</head>
<body>
<h1>Example of "ol" lists</h1>

 BLOCK Level Elements

 Headings
 Paragraph
 Lists

 Unordered Lists
 Ordered Lists
 Definition Lists

 Forms
 Tables

 TEXT Level Elements

If you have a look at the source you will see ordered lists

c© USQ, June 12, 2012

32 Chapter 2 Extensible HyperText Markup Language

Figure 2.7: One possible rendering of Example 2.12.

inside ordered lists. Note that all list
items must be terminated correctly.
</body>
</html>

Figure 2.6 shows the rendered page.

UL Element

This element is used to create an unordered list or “bulleted” list.

The default style for list items is a “bullet” or solid circle. This changes
depending on the nesting of the unordered list. The default bullet
styles are, in order, solid disc, circle, square

LI Element

As with the OL element, the LI element specifies the individual “list
items” in the unordered list. It can contain most other block level
elements except for headings and address elements.

Example 2.12: An example of the ul element.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE HTML PUBLIC

"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

<head>
<title>Example of "ul" and "li" elements</title>

c© USQ, June 12, 2012

2.3 Block-Level Elements 33

</head>
<body>
<h1>Example of the "ul" element</h1>

 BLOCK Level Elements

 Headings
 Paragraph
 Lists

 Unordered Lists
 Ordered Lists
 Definition Lists

 Forms
 Tables

 TEXT Level Elements

If you have a look at the source you will see unordered lists
inside unordered lists. Note that all list
items must be terminated correctly.
</body>
</html>

Figure 2.7 shows the rendered page.

DL Element

The dl is used for “definitions lists”. That is, lists that are in the form
of term/definition pairs.

DT Element

This element defines the definition item for the definition list. It can
only appear within a dL container. The dt element should only contain
text-level elements.

DD Element

This element defines the definition descriptions for the definition list.
It can only appear within a dl container.

The dd element is allowed to contain other block-level elements ex-
cept for headings and addresses. A dd element can appear in dl lists
without an associated dt.

Note Because the DD elements are usually rendered with an indented
left margin, this element is sometimes used to create left indented
paragraphs. There is no requirement for browsers to indent the
left margin, so relying on this behaviour is unsafe. A far better
solution is to use Style Sheets (see Module 3) in conjunction with
the div element.

Example 2.13: An example of the dl element.

c© USQ, June 12, 2012

34 Chapter 2 Extensible HyperText Markup Language

Figure 2.8: One possible rendering of Example 2.13.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE HTML PUBLIC

"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

<head>
<title>Example of "dl", "dt", and "dd" elements</title>
</head>
<body>
<h1>Example of the "dl" element</h1>
<dl>
<dt>Block-Level elements</dt>
<dd>These elements format a "block" or paragraph

of text. Block level elements include headings,
paragraphs, lists, tables, forms and
horizontal rules.

</dd>
<dt>Text-Level elements</dt>
<dd>These elements are used for formatting words

and characters within the text. Text level
elements include font commands, hypertext links,
embedded images, and image maps.

</dd>
</dl>
</body>
</html>

Figure 2.8 shows the rendered page.

2.3.7 HR Element (horizontal rule)

Horizontal rules divide sections in a document by drawing a horizontal
“grooved” line all the way across the browser window. The style and
length of the line can be changed from the default by using style
commands.

The Horizontal Rule element is one of two elements (Line Break is the
other) where the notion of a container does not make sense. Forcing

c© USQ, June 12, 2012

2.3 Block-Level Elements 35

all elements to be containers is an XML requirement—so the Hori-
zontal Rule will be en empty container always. It can be written as
<hr></hr> or more conveniently in the XML shorthand notation for
an empty container <hr />

2.3.8 Tables

Tables are used to display data in rows and columns of cells. The data
to be displayed can be text, preformatted text, images, links, forms,
form fields, other tables, etc. In fact, all other elements can be used
in tables cells.

The table element is general enough that it was quickly utilised as a
layout engine for the entire XHTML page. All of the functionality
of the table as a layout engine has been superseded by Cascading
Style Sheet’s boxes and layers. Unfortunately using the table syntax
is significantly easier than the Cascading Style Sheets syntax as the
later is abstract and implementation varies wildly amongst browsers.

Tables are not the best means for laying out an XHTML page because:

• tables are not well defined when rendered by non-visual browsers.
For example, an audio browser, braille browser (Cascading Style
Sheets have specific commands for the non-visual interpretation
of tables).

• tables, especially when cells contain graphics, can force the user
to scroll horizontally when viewed on small displays.

• tables with absolute cell widths defined can truncate the cells
contents. For example, because the client can choose the font
size, preformatted text can become wider than the fixed width
cell and will be truncated on the right rendering the contents
illegible.

Tables should never be used as a layout engine for entire XHTML
pages.

2.3.9 TABLE Element

Attributes: summary

The table element defines a table and contains all the elements that
specify rows, cells, caption etc. of the table.

The attribute summary is used to provide a long description of the
table that can be used by aural, or braille-based browsers or browsers
on hand-held devices with a limited screen size. That is, devices that
cannot display the table.

2.3.10 CAPTION Element

This element is used to add a caption to a table. It must appear within
the TABLE container.

c© USQ, June 12, 2012

36 Chapter 2 Extensible HyperText Markup Language

Figure 2.9: One possible rendering of Example 2.14.

The caption by default is placed above the table—this default be-
haviour can be changed using style commands. Text within the cap-
tion are by default centred—this default behaviour can be changed
using style commands.

2.3.11 TR Element

This element defines each row of the table. This element can only be
used within a TABLE container.

2.3.12 TH and TD Elements

Attributes: rowspan, colspan

These elements specify the data that is to be contained in each cell
of the table. These elements can only be used within a TR container.
The TH element is used to specify a table header cell. That is, row or
column headings. The text within the TH container is usually rendered
in a bold font. The TD container specifies a standard table data cell.

ROWSPAN This attribute specifies how many rows the current cell will span.

COLSPAN This attribute specifies how many columns the current cell will
span.

Example 2.14: An example of a simple table:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE HTML PUBLIC

"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

<head>
<title>A simple table</title>
</head>

c© USQ, June 12, 2012

2.3 Block-Level Elements 37

<body>
<h1>The TABLE, TR, TD elements</h1>
<table
summary="A simple illustrative table showing

the use of the CAPTION,
TR and TD elements">

<caption>
A simple illustrative table.

</caption>
<tr>

<td>Cell (1,1)</td>
<td>Cell (1,2)</td>
<td>Cell (1,3)</td>

</tr>
<tr>

<td>Cell (2,1)</td>
<td>Cell (2,2)</td>
<td>Cell (2,3)</td>

<tr>
<td>Cell (3,1)</td>
<td>Cell (3,2)</td>
<td>Cell (3,3)</td>

</tr>
</table>

<\body>
<\html>

Figure 2.9 shows the rendered page.

Example 2.15: An example of a table using the ROWSPAN and COLUMNSPAN

attributes:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE HTML PUBLIC

"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

<head>
<title>A cell spanning in a table</title>
<style type="text/css">
table {border-collapse: collapse;}
th,td {border-style: ridge;

padding: 1ex;}
caption {caption-side: bottom;}
</style>
</head>
<body>
<h1>The ROWSPAN &

COLSPAN elements</h1>
<table

summary="A simple illustrative table showing
the use of the ROWSPAN,
and COLSPAN elements">

<caption>
Spanning multiple columns and rows

</caption>
<tr><th rowspan=’3’>Span 3
 Rows</th>

c© USQ, June 12, 2012

38 Chapter 2 Extensible HyperText Markup Language

Figure 2.10: One possible rendering of Example 2.15.

c© USQ, June 12, 2012

2.3 Block-Level Elements 39

Figure 2.11: One possible rendering of Example 2.16.

<th colspan=’3’>Span 3 Columns</th>
</tr>
<tr><th colspan=’2’>Span 2 Columns</th>

<th rowspan=’2’>Column 3</th>
</tr>
<tr><th>Column 1</th>

<th>Column 2</th>
</tr>
<tr><th>Row 1</th>

<td>Cell (1,1)</td>
<td>Cell (1,2)</td>
<td>Cell (1,3)</td>

</tr>
<tr><th>Row 2</th>

<td>Cell (2,1)</td>
<td>Cell (2,2)</td>
<td>Cell (2,3)</td>

</tr>
<tr><th>Row 3</th>

<td>Cell (3,1)</td>
<td>Cell (3,2)</td>
<td>Cell (3,3)</td>

</tr>
</table>
</body>
</html>

This example uses style commands to add borders to the table
and position the caption at the bottom of the table.

Figure 2.10 shows the rendered page.

c© USQ, June 12, 2012

40 Chapter 2 Extensible HyperText Markup Language

Example 2.16: An example of a table within another table.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE HTML PUBLIC

"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

<head>
<title>Nested tables</title>
<style type="text/css">
table {border-collapse: collapse;}

td {border-style: ridge;
padding: 1ex;
text-align: center}

td table td {border-style: solid;
border-width: 1px;}

</style>
</head>
<body>
<h1>Nested Tables</h1>
<table
summary="This is the outside table of an

example of nested tables">
<caption>
Nested Tables

</caption>
<tr><td>Cell (1,1)</td>

<td>Cell (1,2)</td>
<td>Cell (1,3)</td>

</tr>
<tr><td>Cell (2,1)</td>

<td><table
summary="This is the inside table of an

example of nested tables">
<tr><td>Cell (A,A)</td><td>Cell (A,B)</td></tr>
<tr><td>Cell (B,A)</td><td>Cell (B,B)</td></tr>

</table></td>
<td>Cell (2,3)</td>

</tr>
<tr><td>Cell (3,1)</td>

<td>Cell (3,2)</td>
<td>Cell (3,3)</td>

</tr>
</table>
</body>
</html>

Figure 2.11 shows the rendered page.

Exercise 2.17: Using a table with “rowspan” and “colspan” at-
tributes produce a timetable page.

Exercise 2.18: Design a simple navigation bar, with about 5 op-
tions. Build the bar as 5 separate images and use a table to
make the bar appear as one image.

c© USQ, June 12, 2012

2.3 Block-Level Elements 41

Hint: You will need to set cell padding and borders to zero
width—this will require some style commands from the next mod-
ule.

2.3.13 Forms

These elements let you create data-entry forms, that can be filled
out by the user, to be used with server script programming. These
XHTML elements are discussed in detail in Module 9

2.3.14 Frames

Frames allow the XHTML author to divide the current window into
various rectangular region, each region is associated with a separate
XHTML document. Using frames to subdivide a window has some
advantages for the author:

• The author can guarantee that certain parts of the page, for
example, a table of contents, are always visible on the window.

• The author can avoid reproducing common sections of multiple
web documents, by ensuring the same document is included in a
frame on each web page.

Unfortunately these are outweighed by the disadvantages for the client:

• The meaning of the “Back” and “Forward” buttons can be con-
fusing to users.

• Poorly designed frames can be disastrous for navigation.

• The address bar of the web client shows the URL of the top-
level document. This means, it can be hard to find the URL of a
particular frame cell.

• Some browsers do not support frames (well), and it is difficult to
create framed documents that are usable by these browsers.

Note As most of the author functionality of frames can be replaced with
more flexible XML technologies such as XSLT, frames should only
be used in specialised situations—not as a general tool for web
site development.

In this course Frames should never be used!

The Frame Document

In a normal XHTML document, the BODY section immediately follows
the HEAD and contains the body of the web page. In a frames doc-
ument, the BODY is omitted. In lieu of BODY, a FRAMESET element is
used to define the basic row and column structure of the document.
For example, the basic frameset document is

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

c© USQ, June 12, 2012

42 Chapter 2 Extensible HyperText Markup Language

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

<head>
<title>Frameset Document</title>

</head>

<frameset ...>
<!-- FRAME and nested FRAMESET entries -->
...
<noframe>
<!-- used by non-frame browsers -->
...

</noframe>
</frameset>

</html>

Frames are part of the XHTML specification, but the document type
description in the DOCTYPE declaration needs to change for all FRAMESET
documents. The xhtml1-frameset.dtd is only used for FRAMESET docu-
ments.

FRAMESET Element

Attributes: rows, cols

This element divides the current window or frame cell into rows or
columns. Entries can be nested, letting the author divide the window
into complex rectangular regions.

ROWS This element will divide the browser window horizontally. For
example:

<frameset rows="row1-Size, row2-Size, ..., rowN-Size">
...
</frameset>

This divides the current window or frame cell into N rows. The
size of each row is specified in the row list.

COLS This element will divide the browser window vertically. For ex-
ample:

<frameset cols="col1-Size, col2-Size, ..., colN-Size">
...
</frameset>

This divides the current window or frame cell into N columns.
The size of each column is specified in the column list.

There are three ways to specify the height of a row or the width of a
column:

Absolute Size An integer value indicates the size of a cell in “pixels”.

Relative Size An integer value followed by a percent sign indicates the size of
a cell as a percentage of the “total” window size.

c© USQ, June 12, 2012

2.3 Block-Level Elements 43

Remainder An asterisk “*”indicates “whatever space remains”. the asterisk
can be preceded with an integer weight, if there is more than one
asterisk entry. For example:

<frameset cols="150,20%,*,3*">
...
</frameset>

indicates there will be four columns. The first will be 150 pixels
wide, the second will be 20% of the total width, and the remaining
space will be allocated to the final two columns. The first of
which will be allocated one quarter of the remaining space, and
the other three quarters.

Example 2.19: The following XHTML code is an example of a
frameset document.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"

xml:lang="en" lang="en">
<head>
<title>Frameset Document</title>

</head>
<frameset rows="25%,1*,3*">
<frame src="FrameCell.html" />
<frame src="FrameCell.html" />
<frame src="FrameCell.html" />
<noframe>
This is an example of frameset document.
If you are reading this message it means that
your browser is incapable of displaying frames or
there is a syntax error in this frameset document.
Please see the
non-frames version

</noframe>
</frameset>
</html>

where the FrameCell.html document is a standard XHTML
page given by—

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE HTML PUBLIC

"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

<head>
<title>A Frame Cell Page</title>
<style type="text/css">
body {background-color: #700303;

color: #FFDC4C;}
</style>
</head>
<body>

c© USQ, June 12, 2012

44 Chapter 2 Extensible HyperText Markup Language

Figure 2.12: One possible rendering of Example 2.19.

c© USQ, June 12, 2012

2.3 Block-Level Elements 45

Figure 2.13: One possible rendering of Example 2.20.

<h2>Frame Cell Document</h2>
</body>
</html>

Figure 2.12 shows the rendered page.

If both ROWS and COLS are used within a FRAMESET tag then the window
is divided into a grid. If the ROWS attribute is not set then the columns
extend the length of the window. If the COLS attribute is not set then
the rows extend the width of the window. If neither the ROWS or COLS
attribute are set the frame is exactly the size of the window.

Frames are created left-to-right for columns and top-to-bottom for
rows. When both attributes are specified, the page is constructed
left-to-right in the top row, left-to-right in the second row, and so on.

Example 2.20: The following HTML code is an example of using
both the ROWS and COLUMNS attributes.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"

xml:lang="en" lang="en">
<head>
<title>Frameset Document</title>

</head>
<frameset rows="25%,*" cols="*,25%">
<frame src="FrameCell.html" />
<frame src="FrameCell.html" />
<frame src="FrameCell.html" />
<frame src="FrameCell.html" />

c© USQ, June 12, 2012

46 Chapter 2 Extensible HyperText Markup Language

<noframe>
This is an example of frameset document.
If you are reading this message it means that
your browser is incapable of displaying frames or
there is a syntax error in this frameset document.
Please see the
non-frames version

</noframe>
</frameset>
</html>

Figure 2.13 shows the rendered page.

FRAME Element

Attributes: src, name, frameborder, marginwidth, marginheight,
scrolling, noresize

This element designates the XHTML document that will be placed in
a particular frame cell. This element is only legal inside the FRAMESET

container. This element specifies the contents of a frame via its at-
tribute list, therefore it always an empty element so the XML short-
hand for an empty element should be employed.

SRC This attribute specifies the URL of the document to be placed in
the current cell.

NAME This attribute gives a name to the current frame. The frame
name can then be used as a target for an anchor (see §2.21). The
frame name must start with an alphabetic character [a-zA-Z].
There are four predefined names that begin with an underscore,
see §2.23.

FRAMEBORDER This attribute specifies whether the border surrounding a cell
will be drawn. The allowed values are 1 (for yes) or 0 (for no).
Whether a border appears on the side of a cell depends also on
the FRAMEBORDER value of the adjacent cells. The FRAMEBORDER

attribute must be set to 0 on adjacent cells for the border between
them not to appear.

MARGINWIDTH Specifies the right and left cell margins

MARGINHEIGHT Specifies the top and bottom cell margins

SCROLLING Specifies whether cells should have scrollbars. There are three
possible values. The value AUTO means the scrollbar will appear
in a cell when needed, this is the default action. The value YES

means a scrollbar will always appear. The value NO means a
scrollbar will never appear.

NORESIZE By default the user can resize frame cells by dragging the cell bor-
der. This attribute disables this default behaviour. As XHTML
requires that attributes must have a value the correct usage for
noresize is

<frame src="FrameCell.html" noresize="noresize" />

Example 2.21: An example of using nested FRAMESETs.

c© USQ, June 12, 2012

2.3 Block-Level Elements 47

Figure 2.14: One possible rendering of Example 2.21.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"

xml:lang="en" lang="en">
<head>
<title>Frameset Document</title>

</head>
<frameset rows="30%,*">
<frame src="FrameCell.html">
<frameset cols="*,*">
<frame src="FrameCell.html">
<frameset rows="*,*">

<frame src="FrameCell.html">
<frame src="FrameCell.html">

</frameset>
</frameset>
<noframe>
This is an example of frameset document.
If you are reading this message it means that
your browser is incapable of displaying frames or
there is a syntax error in this frameset document.
Please see the
non-frames version

</noframe>
</frameset>
</html>

Figure 2.14 shows the rendered page.

c© USQ, June 12, 2012

48 Chapter 2 Extensible HyperText Markup Language

Figure 2.15: One possible rendering of Example 2.22.

NOFRAMES Attribute

All FRAMESET documents should contain a NOFRAMES container. A
browser that supports frames will ignore the XHTML within the NOFRAMES
container. However, the text will be shown by other browsers, who
will ignore all unrecognised XHTML.

The text and mark up inside the NOFRAMES container can be used to
give a non-frames version of the page, or more probably supply links
to a separate non-frame version of the “main” cell of the document.

Authors wedded to frames often don’t bother to supply non-frame
versions of their documents. This is one of the major reasons frames
should be avoided, if you are unwilling to provide a non-frame alter-
native then don’t use frames.

Targeting Frame Cells

A document can specify that pages referenced by hypertext links be
placed in certain frames when selected. To do this, the frame cell is
given a name via the NAME attribute of the FRAME element, then the
hypertext reference gives a TARGET using that name. In the absence
of a TARGET attribute, the new document will appear in whatever cell
the anchor was in. If you specify a target that does not exist, the
referenced document is placed in a new browser window, which is
assigned the target name for future reference. Elements that support
the TARGET attribute include A, LINK, BASE (defines a default target
for the current document), AREA, and FORM

Note The TARGET attribute can be used to pop up a new browser win-
dow (or tag if your browser supports it) without ever using frames
and FRAMESET documents.

The TARGET attribute is one of the only useful ideas to come from
frames!

Example 2.22: One common use of frames is to supply a small tool
bar or table of contents frame, with a larger region reserved for
the main document. Selecting an entry in the table of contents
displays the linked document in the main document area.

c© USQ, June 12, 2012

2.3 Block-Level Elements 49

For example, the following Frameset document:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"

xml:lang="en" lang="en">
<head>
<title>Frameset Document</title>

</head>
<frameset rows="25%,*">
<frame src="ToC.html" name="ToC">
<frame src="Module1.html" name="Main">
<noframe>
This is an example of frameset document.
If you are reading this message it means that
your browser is incapable of displaying frames or
there is a syntax error in this frameset document.
Please see the
non-frames version

</noframe>
</frameset>
</html>

with the table of contents document ToC.html

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"

xml:lang="en" lang="en">
<head>
<title>Table of Contents</title>
<style type="text/css">
body {background-color: #C4FFB2;}
</style>
</head>
<body>
<h4>Contents</h4>

Introduction

XHTML

CSS

Style

</body>
</html>

and the document Module1.html

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"

c© USQ, June 12, 2012

50 Chapter 2 Extensible HyperText Markup Language

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"

xml:lang="en" lang="en">
<head>
<title>Module 1: Introduction</title>

</head>
<style type="text/css">
body {background-color: #B2FBFF;}
</style>
<body>
<h1>Module 1:
Introduction</h1>
<hr />
<p>
Next Module: Module 2
</p>
</body>

</html>

Figure 2.15 shows the rendered page.

In Example 2.22 the ToC.html document had the target explicitly
defined for each link. The same effect could have been achieved by
using the tag <BASE TARGET="Main"> in the HEAD of the document.

The default behaviour for named frames is that linked documents are
displayed in the same cell as the document containing the link (cf. the
link in Module1.html).

Exercise 2.23: Use the TARGET attribute of the anchor element to
place documents in new browser windows. Do not use frames or
FRAMESET documents.

Predefined Targets

There are four built-in frame names that can be used when specify-
ing the TARGET attribute: blank, top, parent, self. Since user-
defined frame names cannot begin with an underscore, these names are
guaranteed to have the same interpretation in all frame documents.

blank Using a link target of “ blank” causes the linked document to be
loaded into a new unnamed window.

self Using a link target of “ self” causes the linked document to be
displayed in the current frame cell. In the absence of of a BASE

target the default behaviour is to place the linked document in
the cell containing the link.

top Using a link target of “ top” causes the linked document to oc-
cupy the whole of the current browser window, thus cancelling
all other frames.

parent Using a link target of “ parent” causes the linked document to be
displayed in the immediate FRAMESET parent of the current frame.
If there are no nested frames then this should be equivalent to
self.

c© USQ, June 12, 2012

2.4 Text-Level Elements 51

Exercise 2.24: Design a web site for a company that manufactures
“Thneeds”

. . .
A Thneed’s a Fine-Something-That-All-People-Need!
It’s a shirt. It’s a sock. It’s a glove. It’s a hat.
But it has other uses. Yes, far beyond that.
You can use it for carpets. For pillows! For sheets!
Or curtains! Or covers for bicycle seats.
. . .

From “The Lorax” by Dr. Seuss

Design the site using frames. Have a navigation frame on each
page. Companies normally list such sections as “products”, “about
us”, “ordering”, “help”, “home” etc.

The contents of each section does not have to be very detailed.
The idea is to create a “template” for a company site using
frames.

Exercise 2.25: Redesign the simple navigation through the exam-
ples directories using “table of contents” frames.

2.4 Text-Level Elements

Text level elements allow the author to change the rendering of text
fragments. These elements come in two flavours, “Logical text ele-
ments” and “Font2 elements”. Font elements explicitly change the
style of the rendering font. For example, they can change the font to
italic, or bold, change the size of the rendering font, or change to a
new font family. Logical text elements on the other hand describe the
type of the text being rendered and then allow the browser to make
the appropriate rendering choice. For example, text can be required to
be emphasised, or strongly emphasised. In a print based medium
emphasised text has traditionally been rendered using an italic font,
strongly emphasised text a bold font, but in the web environment,
where a browser may not be text based, specifying text should be
emphasised makes more sense than stating text should be italic.

Font elements assume the browser is text based and therefore make
explicit font commands. This is not the correct way to format an
XHTML document, assumptions about the browser should not be
made. It is difficult to see how an italic font can be rendered by an
audio browser. For this reason font elements are being removed from
the language in favour of logical elements and style sheets (see Module
3) and will not be discussed or used in this course.

2.4.1 Phrase Elements

These elements only have the attributes that all XHTML elements
have (TITLE, CLASS, ID and STYLE)3.

2 A “font” is a complete set of characters in one size and design.
3 There are others but they are not covered in this course

c© USQ, June 12, 2012

52 Chapter 2 Extensible HyperText Markup Language

EM Element

The enclosed text should be emphasised. The default rendering is to
use an italic font.

STRONG Element

The enclosed text should be strongly emphasised. The default render-
ing is to use a bold font.

DFN Element

This element is used for the defining occurrence of a term. There is
no consensus how this should be rendered.

CODE Element

This element is used to display segments of computer code. It is
typically rendered in a fixed-width (typewriter) font.

SAMP Element

This element is used to display sample program output. It is typically
rendered in a fixed-width (typewriter) font.

KBD Element

This element is used to display examples of keyboard input. It is
typically rendered in a fixed-width (typewriter) font.

VAR Element

This element is used to display a variable or an argument to a function
or procedure. There is no consensus how this should be rendered.

CITE Element

This element is used to display a citation or reference. The default
rendering is to use an italic font.

ABBR Element

This element is used to display abbreviations. The TITLE attribute
can be used to give a fuller explanation of the abbreviation.

ACRONYM Element

This element is used to display acronyms. The TITLE attribute can
be used to give a fuller explanation of the acronym.

2.4.2 Subscripts and Superscripts

These elements only have the attributes that all XHTML elements
have (TITLE, CLASS, ID and STYLE).

c© USQ, June 12, 2012

2.4 Text-Level Elements 53

SUB Element

This element is used to display subscripts—required for some lan-
guages. Normally rendered in a smaller font.

SUP Element

This element is used to display superscripts—required in some lan-
guages. Normally rendered in a smaller font.

2.4.3 Document Modification

The elements INS and DEL are used to markup sections of the doc-
ument that have been inserted or deleted with respect to an earlier
version of a document.

INS Element

This element is used to display “inserted” text.

DEL Element

This element is used to display “deleted” text. Normally the text is
displayed and “struck-through” by a line.

Both elements take the attributes

CITE This attribute is intended to point to information explaining why
a document was changed.

DATETIME The date and time the change was made.

Example 2.26: An example of the phrase or logical text elements.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"

xml:lang="en" lang="en">
<head>
<title>Phrase Text Elements examples</title>
</head>
<body>
<h1>Phrase Text
 Elements</h1>
Emphasised Text

Strongly Emphasised Text

<dfn>Definition Text</dfn>

<code>Code Text</code>

<samp>Sample Text</samp>

<kbd>Keyboard Text</kbd>

<var>Variable Text</var>

<cite>Citation Text</cite>

<abbr title="World Wide Web">WWW</abbr>

<acronym title="Women’s Army Core">WAC</acronym>

SUP example: M^{lle} Dupont

SUB example: Carbon Dioxide CO₂

c© USQ, June 12, 2012

54 Chapter 2 Extensible HyperText Markup Language

Figure 2.16: One possible rendering of Example 2.26.

c© USQ, June 12, 2012

2.5 Embedded Images 55

<ins>Insert new text</ins>

Deleted text
</body>
</html>

Figure 2.16 shows the rendered page.

2.4.4 Font Elements

As discussed above the font elements are being phased out of the
language because these elements only have meaning when the browser
is text based. For this reason the use of font elements are discouraged
and will not be discussed in this course.

All fonts changes should be done using style sheets.

2.4.5 Controlling Line Breaks

The default action when rendering HTML is to ignore the line breaks
within the document (except in the case of text within PRE and TEXTAREA

elements). The browser will insert line breaks into the text based on
the width of the rendering window.

BR Element

The P element will force a line break but also end the paragraph. The
BR element inserts a line break without ending the current paragraph.

2.5 Embedded Images

The XHTML allows images to be embedded directly into a document.
The format of the image files that can be displayed is dependent on
the capabilities of the web client. Most graphical browsers support the
Graphics Interchange Format (GIF, pronounced with a hard G), the
Joint Photographic Experts Group (JPEG) graphics format and the
Portable Network Graphics (PNG, pronounced “ping”) format (see
Module 4 for more information).

2.5.1 IMG Element

Attributes: src (required), alt (required), width (recommended),
height (recommended), usemap, ismap

The IMG element is used to insert an image into an XHTML document
at the current location.

Note The IMG element is a text level element, and thus does not cause
a paragraph break.

SRC The required attribute SRC specifies the URL of the image file
to be inserted into the document. The URL can be either an
absolute or relative one. For example:

c© USQ, June 12, 2012

56 Chapter 2 Extensible HyperText Markup Language

ALT This attribute specifies the string to be displayed in place of the
image. It is used by text-only browsers, browsers with graphics
temporarily disabled, and browsers for people with disabilities
that preclude the use of graphics. This is a required attribute.

WIDTH

HEIGHT These attributes specify the intended size of the image. If the
dimensions are different to the original image dimensions, the
image will be stretched or shrunk to fit.

Though not required, WIDTH and HEIGHT should be supplied with
every image. If the browser knows the width and height of every
image on a page, the page can be rendered with text and space left
for the images before they have been downloaded. This greatly
reduces the time the user must wait before a readable page is
available.

<img src="images/usqweb.gif" alt="USQ Logo"
width="116" height="74">

Note Do not use the WIDTH and HEIGHT attributes to scale an
image on a page. Forcing a client to download a large image
and then only display a scaled version of that image is a
misuse of the attributes—and demonstrates a laziness on the
part of the page author. Create multiple copies of the image
at different resolutions and download those as needed.

USEMAP

IMAP See the graphics module 4, on the use of these attributes.

Example 2.27: An example demonstrating the use of the IMG ele-
ment can be found in the examples directory for this module on
the course web site

2.5.2 Iframe

Attributes: src, name, frameborder, marginwidth, marginheight,
scrolling, height,width

The “Inline Frame” element allows authors to insert a frame within a
block of text. Using the IFRAME element an XHTML document can
be inserted in the middle of another XHTML document. The frame
may be aligned with the surrounding text.

SRC This attribute specifies the URL of the document to be placed in
the inline frame. (see the attributes of the Frame element.)

NAME This attribute gives a name to the current frame. The frame
name can then be used as a target for an anchor (see §2.21). (see
the attributes of the Frame element.)

FRAMEBORDER This attribute specifies whether the border surrounding the frame
will be drawn. (see the attributes of the Frame element.)

c© USQ, June 12, 2012

http://www.sci.usq.edu.au/courses/CSC2406/semester2/sb/examples/xhtml/index.html
http://www.sci.usq.edu.au/courses/CSC2406/semester2/

2.5 Embedded Images 57

Figure 2.17: One possible rendering of Example 2.28.

MARGINWIDTH Specifies the right and left frame margins. (see the attributes of
the Frame element.)

MARGINHEIGHT Specifies the top and bottom frame margins. (see the attributes
of the Frame element.)

SCROLLING Specifies whether the frame should have scrollbars. (see the at-
tributes of the Frame element.)

height The frame height.

width The frame width.

Inline frames may not be resized (so they do not take the noresize

attribute—as frames do).

Example 2.28: An example of using the IFRAME element.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"

xml:lang="en" lang="en">
<head>
<title>Document using the IFRAME element</title>

</head>

c© USQ, June 12, 2012

58 Chapter 2 Extensible HyperText Markup Language

<body>
<h1>The IFRAME element</h1>
The “Inline Frame” element allows authors to
insert a frame within a block of text. Using the
<kbd>IFRAME</kbd> element an XHTML
document can be inserted in the middle of
another XHTML document.
The frame may be aligned with the surrounding
text.
<iframe src="iframe.html" width="400" height="500"

scrolling="auto" frameborder="1">
[Your web browser does not appear to support frames
However the source that was to be displayed in this frame
can be found here]
</iframe>
</body>
</html>

Figure 2.17 shows the rendered page.

2.6 Hypertext Links

One of the central ideas of the web and HTML is that documents do
not have to be read from top to bottom nor do pages have to be read
in sequential order.

Hypertext links can send the client to a new document that has to
be downloaded or it can send the client to a new part of the current
document.

2.6.1 A Element

Attributes: HREF, NAME (one or other attribute required)

The text or image enclosed by the ANCHOR element becomes a “click-
able” region. This region is often underlined and highlighted in the
link colour

NAME The anchor element can specify a hypertext link or it can specify
the end point for a hypertext link.

When the NAME attribute is used the anchor element gives the
region a name so that other links can reference it. It becomes
the anchor for a hypertext link. For example:

Beowulf:
A modern English verse translation

It should be noted that the name is case sensitive.

The NAME attribute of the anchor element is a way of addressing
sections within a document. This means hypertext links can
jump into a document, not just to the start of a document.

The same effect can be achieved by any element given a unique
name using the ID attribute.

c© USQ, June 12, 2012

2.7 Unicode 59

<h2 id="Beowulf">Beowulf:
A modern English verse translation</h2>

HREF The HREF attribute is used to specify the “address” that the
browser should display when the user clicks upon the designated
region. The “address” can be an absolute URL, relative URL, an
anchor specified with the NAME attribute, or a combination URL
and name. For example, using URLs only:

Department of
Mathematics and Computing

Web Technology

To use an anchor specified by the NAME attribute of the ANCHOR

element (or the ID attribute of any element) the hypertext refer-
ence of the name must be preceded by a # sign. For example:

Jump to the Table of Contents
Jump to the

Module 1 index

In the first example, when the “Table of Contents” text is se-
lected then the browser jumps to the region defined by the anchor
with the name “TOC” (or for any element with an id attribute with
value TOC) within the same document.

In the second example, when the “Module 1” text is selected then
the browser loads the resource defined by the URL “Module1.html”
and positions the region defined by the anchor with the name
“Index” (or for any element with an id attribute with value TOC)
at the top of the browser window.

Example 2.29: A large example demonstrating the use of the A

element can be found in the examples directory for this module
on the course web site

Note When using an image as a link, if the end tag is on a new
line and does not come immediately after the end of the IMG tag
then there could be a small underscore after the image. This is
the browser underlining the white space at the end of the link
region.

2.7 Unicode

In general any Unicode character can be inserted into an XHTML
document—either directly by creating a UTF8 document or by using
“character entities”. The character entity construct “&#xxxx;” will
insert the character with decimal number xxxx at the point it occurs.
Values of 0–127 represent the standard ASCII character set, printable
characters in the range 128–255 represent the standard Latin-1 char-
acter set, outside this range the W3C have defined a set of special
characters and a set of symbols and Greek characters (All XHTML
character codes can be found on the course web site, or follow the links
above.).

c© USQ, June 12, 2012

http://www.sci.usq.edu.au/courses/CSC2406/semester2/sb/examples/xhtml/index.html
http://www.sci.usq.edu.au/courses/CSC2406/semester2/
http://www.sci.usq.edu.au/courses/CSC2406/semester2/resources/codes/ascii.html
http://www.sci.usq.edu.au/courses/CSC2406/semester2/resources/codes/xhtml-latin1.html
http://www.sci.usq.edu.au/courses/CSC2406/semester2/resources/codes/xhtml-latin1.html
http://www.sci.usq.edu.au/courses/CSC2406/semester2/resources/codes/xhtml-special.html
http://www.sci.usq.edu.au/courses/CSC2406/semester2/resources/codes/xhtml-special.html
http://www.sci.usq.edu.au/courses/CSC2406/semester2/resources/codes/xhtml-symbol.html

60 Chapter 2 Extensible HyperText Markup Language

As well as the number of the character, characters can be referenced
using a mnemonic. For example, the copyright symbol c©, can be
referenced as “©” or using the mnemonic “©” in both cases
the character entity is bracketed with “&” and “;”.

Table 2.1: Characters codes needed for XHTML special characters

Character HTML mnemonic HTML Number

< < <

> > >

& & &

" " "

Non-breaking space

Table 2.1 shows some of the character entities that have to be used for
special XHTML characters. The character entities for the < character
and the > characters have to be used if you wish to display HTML
source code.

As these character entities are considered plain text they can be used
as attribute values and in other places that prohibit XHTML mark-up.

2.8 Exercises

In the following exercises install all the pages on your own server.

Ex. 2.30: Create a home page, describing yourself and your inter-
ests. Remember create the page using a text editor.

Ex. 2.31: Create a page describing your favourite hobby. Include
links to similar pages.

Ex. 2.32: On your hobby page add a table of contents at the top,
with links to named anchors within the page.

Ex. 2.33: Experiment with creating HTML links to external pages
and to named anchors within the external pages.

Ex. 2.34: Use the list elements to construct a page containing lists
of your favourite Cds, Books, Films

Ex. 2.35: Experiment with incorporating images into pages. Create
an image intensive page. Load the page with auto-image load
turned off on your browser. Where does the ALT text appear?

Ex. 2.36: Create an image intensive page with text. Do not include
the WIDTH and HEIGHT attributes of the IMG element.

Now add the WIDTH and HEIGHT attributes of the images. Reload
the page after clearing the browser memory and cache of the
images so that they will be downloaded again. Is there any dif-
ference?

Ex. 2.37: What happens if the WIDTH and HEIGHT attributes of the
IMG element are different to that of the loaded image?

c© USQ, June 12, 2012

2.9 Questions 61

2.9 Questions

Short Answer Questions

Q. 2.38: Why should logical text elements be used in preference to
font text elements.

Q. 2.39: What is an attribute?

Q. 2.40: Why should embedded images always include the ALT at-
tribute?

Q. 2.41: Why is it that some end tags are optional?

Q. 2.42: What is the difference between an XHTML tag and an
XHTML element?

Q. 2.43: What is a name anchor? How is it defined?

Q. 2.44: Explain how 6 hexadecimal numbers can describe a colour?

Q. 2.45: What is the difference between “block level elements” and
“text level elements”.

Q. 2.46: Why should embedded images always include the WIDTH

and HEIGHT attributes?

Q. 2.47: Why can frames cause navigation problems?

Q. 2.48: Write a basic frameset document.

Q. 2.49: Write a basic 2x3 table.

Q. 2.50: Why are frames given “names”?

Q. 2.51: What is the rendering difference between the TD element
and the TH element?

Q. 2.52: How are browser windows “targetted”?

2.10 Further Reading and References

• The examples directory for this module on the course web site.

• The World Wide Web consortium HTML4.0 definition can be
found in the course resources directory.

• The World Wide Web consortium XHTML definition can be
found in the course resources directory.

• The World Wide Web consortium has all the specifications for
anything related to the web. Their web site is at

http://www.w3c.org/.

The site contains many links for HTML specifications and tuto-
rials.

c© 2010 Leigh Brookshaw
c© 2003 Leigh Brookshaw and Richard Watson

Department of Mathematics and Computing, USQ.

(This file created: June 12, 2012)

c© USQ, June 12, 2012

http://www.sci.usq.edu.au/courses/CSC2406/semester2/sb/examples/xhtml/index.html
http://www.sci.usq.edu.au/courses/CSC2406/semester2/
http://www.sci.usq.edu.au/courses/CSC2406/semester2/resources/html40.pdf
http://www.sci.usq.edu.au/courses/CSC2406/semester2/resources/xhtml.pdf
http://www.w3c.org/

62 Chapter 2 Extensible HyperText Markup Language

c© USQ, June 12, 2012

Chapter 3 Cascading Style Sheets

It soon became apparent in the infancy of the Web that the default
rendering of HTML was too restrictive. New elements and style at-
tributes were added to the language without control—browsers only
recognised the additions they had added to the language. HTML
was growing uncontrollably and becoming cumbersome. To address
these problems and to try and split style from content—the goal of
the original HTML—a “style language”, independent of HTML was
developed—Cascading Style Sheets (CSS).

The version of CSS we will discuss below is CSS2.

Examples, of using CSS to style XHTML documents can be found in
the examples directory for this module on the course web site.

Chapter contents
3.1 Content and Style 63
3.2 Accessibility 64
3.3 Including Style Commands in (X)HTML 67

3.3.1 STYLE Element 67
3.3.2 External Style Sheets 69
3.3.3 Importing Style Sheets 71
3.3.4 Inline Style 71

3.4 Specifying Style Rules 72
3.4.1 Selectors 72
3.4.2 Precedence Rules 75
3.4.3 Property URLs 76
3.4.4 Property Units 76

3.5 Font Properties 78
3.6 Foreground and Background Properties . 82
3.7 Text Properties 86
3.8 Bounding Box Properties 87
3.9 Box Positioning Properties 92

3.9.1 Classification Properties 98
3.10 DIV and SPAN Elements 98
3.11 Questions 101
3.12 Further Reading and References 102

3.1 Content and Style

A popular term used these days is “multi-tasking”—many people claim
they can multi-task—that is, perform multiple tasks simultaneously!

In fact, very few people have (if anyone has) the ability to multi-
task—what actually happens is that people task-switch—switch from
one task to another—concentrating exclusively on the current task. If

http://www.sci.usq.edu.au/courses/CSC2406/semester2/sb/examples/css/index.html
http://www.sci.usq.edu.au/courses/CSC2406/semester2/

64 Chapter 3 Cascading Style Sheets

multi-tasking was possible then it would not be illegal to drive and
talk on a mobile phone.

Task-switching is tiring and leads to errors—in all tasks. When writing
a document concentrating on content simultaneously with formatting
invariably leads to errors. After all, producing content itself requires
concentrating on the topic, grammar and spelling—formatting is an
unnecessary burden—and should be done before starting the docu-
ment or section or after completing the document or section.

Originally HTML and the web were developed to allow large groups
of physicists to collaborate easily over the Internet. The idea was to
develop a markup language that would allow an author to concentrate
on content and not concentrate on the visual layout.

To this end HTML tried to be a logical formatting language. By that,
we mean the language contains no reference to the physical media used
to display the formatted document. For instance, the HTML element
H1 is used to format a major heading. As the author concentrating
on content you do not need to have control over the font being used,
the style of the font, size of the font, the colour of the text, the colour
of the border, etc. All you need to know is that this markup element
will display something that will be recognisable as a header.

Unfortunately, this did not take into account an author’s not unrea-
sonable desire, to have control of the final output. What happened was
that more and more attributes were added to elements, attributes that
controlled the look of the rendered markup. This was done in such
a haphazard way that the language has become overburdened with
attributes. The addition of more style “attributes” means that con-
tent and style become two tasks that are performed simultaneously—
because they occur in the same language.

The problems of content and style where recognised in HTML—so
a style language “Cascading Style Sheets” (CSS) was developed—
completely different from HTML but used to style the “logical” HTML
elements.

3.2 Accessibility

As a web document author you have no idea what hardware or software
a visitor to your site may be using. In the discussion above, it was
pointed out that as author you do not have control over the font used in
the HTML element H1 — this presupposes that the visitor to your site
is using a browser were the concept of a “font” has meaning! Braille
or Aural browsers for the blind do not have a concept of a “font” —
but do understand the idea of a “major heading”.

The number of devices that can access a web page or the operating
contexts that a visitor to your site may be in can be very different
from your own. For example users may:

• not be able to see, hear, move or be able to process some types
of information at all.

c© USQ, June 12, 2012

3.2 Accessibility 65

• may not be able to use or have access to a keyboard or mouse.

• have a text-only screen, small screen (e.g. mobile phone), or slow
connection (e.g. modems, wireless, mobile phone).

• be in situations where there eyes, ears or hands are busy or inter-
fered with (e.g. loud environment, busy doing some other task).

• have a different browser, an earlier version of a browser, a voice
browser, or a different operating system.

Logical markup is the obvious markup style that should be used for
web documents since the author cannot anticipate the user’s environ-
ment. Logical markup makes as few assumptions about the clients
environment as possible—allowing the client’s web browser make the
display decisions.

Before the advent of CSS many of the style additions to the HTML
language were “physical markup” elements and attributes. For exam-
ple, the FONT element, hard units such as points, pixels, centimetres
etc. The problem raised by physical markup soon became apparent
— sites were (and are) being designed specifically for the hardware
owned and used by the designer! Little thought or consideration was
(or is) given to people with differing needs or resources.

Example 3.1: How often have you gone to a site and seen the words—

Best viewed using Internet Explorer X or better, Firefox 3.x or
better

or

Best viewed at 1280x1024 resolution.

At best these sites show that the author has a woeful knowledge
of how to use the standards to create web documents that work
in all environments. At worst it shows a contempt for the web
and the client.

Properly authored web documents should not require such state-
ments as they will look “reasonable” on any hardware or using
any software.

Example 3.2: A basic difference between client hardware is the res-
olution of the video card. When designing web pages NO assump-
tions should be made about the resolution of the clients screen.
For example, my video card has a resolution of 1920 × 1080 at
95 dots per inch. Web pages with font size definitions designed
for video cards with a smaller resolution are unreadable on the
higher resolution video card.

Some other differences that should be considered when designing
web pages are:

• Internet connection speeds

• Video card memory which controls screen resolution and
colour depth

c© USQ, June 12, 2012

66 Chapter 3 Cascading Style Sheets

• Software used. Web standards are more likely to display
correctly across platforms and browsers.

The web should be a medium that makes “information” accessible to
everyone. With the introduction of “physical markup” the universality
of the web was lost. By introducing a style language separate from
content—the content markup language (X)HTML again becomes a
“logical” markup language—that can be interpreted by any browser,
on any hardware, for any user, in any situation.

Cascading style sheets are a powerful and flexible way of specifying
formatting information for web pages. They let you define the font
style, font size, background and foreground colours, background im-
age, margins, and other characteristics for each of the standard logical
XHTML elements. Style sheets allow the author to customise the look
and feel of each XHTML element. This means that XHTML elements
truly become “logical elements” that describe the conceptual modifi-
cations required to the document without any reference to a “physical
change”. The physical changes have all been incorporated into a style
sheet definition. Style sheets can then describe the physical modifica-
tions required for differing media types — but the XHTML markup
of the document does not change.

Another advantage of using style sheets is that page design is divorced
from page content. A page author can concentrate on the page content
using standard XHTML logical markup. The look and feel of the site
can be a separate issue dealt with by using style sheets.

The formatting rules of style sheets are applied in a hierarchical or
“cascading” manner. This lets the default rules from the site style
sheet combine with any special design rules required for the individual
pages which can then be combined with explicit rules from the client.
This allows all interested parties, the site designer, the page author
and the client have some say in the final outcome.

Exercise 3.3: To see the effect of style sheets, visit the course re-
source site

http://www.sci.usq.edu.au/courses/CSC2406/semester2/

with style sheets turned off in your browser (If you can — not all
browsers have this option. If your browser does not, download
the home page and view it in your browser from your local disk
with the style sheet LINK removed from the document’s header).

Style sheets can be loaded via URLs, permitting the sharing of style
sheets and letting authors change the look and feel of an entire web
site by changing only a single style sheet file.

The current CSS definitions are defined as Level 1 Level 2 and Level 3.
All browsers have implemented the Level 2 definition which supersedes
the Level 1 definition. This section’s description is applicable to Level
2 style sheets only.

c© USQ, June 12, 2012

http://www.sci.usq.edu.au/courses/CSC2406/semester2/

3.3 Including Style Commands in (X)HTML 67

Figure 3.1: One possible rendering of the screen style of Example 3.4.

Figure 3.2: One possible rendering of the print style of Example 3.4.

3.3 Including Style Commands in (X)HTML

There are a number of ways to incorporate style sheets into an HTML
document:

• explicitly code the style sheet information inside the HEAD con-
tainer of the document, using the HTML STYLE element.

• import remote style rules from a style sheet document

• specify style information directly in the body of the document.

• or a combination of any of the above.

3.3.1 STYLE Element

Attributes: TYPE (required), MEDIA

This element must appear within the HEAD element of the HTML doc-
ument. It contains the CSS formatting rules for the document. For
example:

Example 3.4: An example of using the style element.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE HTML PUBLIC

"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

<head>
<title>CSS: Font Families</title>
<style type="text/css" media="screen">

<!--
h1 {font-family: helvetica, sans-serif;

color: maroon;
text-align: center;
text-decoration: underline;}

-->

c© USQ, June 12, 2012

68 Chapter 3 Cascading Style Sheets

</style>
<style type="text/css" media="print">

<!--
h1 {font-family: "new century schoolbook", serif;

text-align: center;}
-->
</style>

</head>
<body>
<h1>Header Aligned: Center</h1>
</body>
</html>

Figure 3.1 shows the rendered page for the screen and Figure 3.2
shows the rendered page for printing.

Note The style element should only contain CSS commands not XHTML
commands. There is one exception however, to ensure that CSS
commands are not displayed by a browser that does not under-
stand your style commands they should be surrounded by XML
comment tokens <!-- ... -->. The CSS parser ignores them
and the XHTML parser ignores any text between them.

TYPE This attribute defines the style sheet language. There is no de-
fault language, so it must always be defined. The standard lan-
guage, and the language described in this module is “text/css”.

MEDIA This attribute specifies the intended display medium that the
style rules are designed to apply. The attribute value can be a
comma separated list. Some of the currently defined media values
are:

screen for computer screens;

print for printed documents;

braille for braille, tactile devices;

aural for speech synthesisers;

all all devices;

Exercise 3.5: Copy Example 3.4 to a file and change the me-
dia type in the example above to print. Load the file into a
web browser using the file:// URL. How is it formatted?
Have a look at the document using “print preview” option
of your web browser. How is the print version formatted?

The default value is all. With the MEDIA attribute the docu-
ment author can specify different style rules for different display
media. For example, the rules for print media are normally very
different from the rules for screen media. Style for print media
would normally have navigation links removed, background im-
ages removed, monochrome instead of colour, different fonts, font
sizes specified in printers points, etc.

c© USQ, June 12, 2012

3.3 Including Style Commands in (X)HTML 69

Figure 3.3: One possible rendering of the screen style of Example 3.6.

3.3.2 External Style Sheets

If a style sheet is to be designed to give a site the same look and feel
then the style sheet rules should be placed in a separate document.
The style sheet document can be linked to the site pages by using the
XHTML LINK element.

For example:

<link rel="stylesheet"
title="Site Style"
href="/site-style.css"
type="text/css"
media="screen" />

REL The relationship attribute specifies that the link is to the main
STYLESHEET. An alternate style sheet can be specified with the
value ALTERNATE STYLESHEET and setting the TITLE attribute.
The web browser should supply some mechanism to switch be-
tween style sheets.

TITLE The title of the style sheet. If this attribute is set then this style
sheet is assumed to be the authors preferred style sheet.

HREF The URL of the style sheet.

TYPE The style language used in the style sheet.

MEDIA The display media the style sheet is intended for. This attribute
is optional—the default action is to apply it to all media.

If multiple style sheet links appear in the document HEAD then the
styles are blended in the order they appear provided they have the
same TITLE (or no title).

Example 3.6: An example of using external style sheets.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE HTML PUBLIC

"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

<head>
<title>CSS: External Style Sheets</title>

c© USQ, June 12, 2012

70 Chapter 3 Cascading Style Sheets

Figure 3.4: One possible rendering of the print style of Example 3.6.

<link rel="stylesheet" type="text/css"
href="site_screen.css" media="screen" />

<link rel="stylesheet" type="text/css"
href="site_print.css" media="print" />

</head>
<body>
<h1>Using External Style Sheets</h1>
<p>
External style sheets are excellent for
setting the base style for a site. The general style for
site can be completely changed by changing the style file.
</p>
</body>
</html>

where site screen.css is given by

/*
** External style sheet for the Screen
*/

body { color: #000000;
background-color: #B9B4E5;}

h1, h2, h3 { font-family: Helvetica, san-serif;
color: #3A0761;}

p:first-letter { font-size: xx-large;
font-weight: normal }

and site print.css is given by

/*
** External style sheet for Printing
*/

body { color: #000000;
background-color: #FFFFFF;}

h1, h2, h3 { font-family: serif;}

h1 {text-decoration: underline;}

p:first-letter { font-size: xx-large;
font-weight: normal }

c© USQ, June 12, 2012

3.3 Including Style Commands in (X)HTML 71

Figure 3.3 shows the rendered page for the screen and Figure 3.4
shows the rendered page for printing.

Exercise 3.7: Go to the course resource web site and experiment
with the style sheets of Example 3.6

Exercise 3.8: To download a style sheet and study it all you need
is the style sheet’s URL. Try the URL:

http://www.sci.usq.edu.au/courses/CSC2406/semester2/build/

Site.css

3.3.3 Importing Style Sheets

The Style Sheet construct import lets the author break style sheets
up into logical sections. Each section can be imported separately. For
example:

<style type="text/css">
<!--
@import URL(http://www.sci.usq.edu.au/css/margins.css);
@import URL(http://www.sci.usq.edu.au/css/tables.css);
@import URL(http://www.sci.usq.edu.au/css/fonts.css);
-->
</style>

The import statement must come first within any style sheet.

Note The import statement is not an element within HTML, it is part
of the Style Sheet language “text/css”.

Everything that is contained within the HTML element STYLE is
not HTML but written in the Style Sheet language defined by
the TYPE attribute.

3.3.4 Inline Style

The style sheet specification includes a new attribute added to all
(X)HTML elements. The STYLE attribute allows the author to inline
the style specifications in the element tag (This attribute is part of
the HTML4.0 specification, and thus the XHTML specification). For
instance:

<h1>Warning Message!</h1>
<p style="margin-left: 4em;

margin-right: 4em;
font-size: 200%;
color: red">

You have just violated the code
of practices of this institution!
</p>

will modify the text in the paragraph contained within this P element
only, of the document.

Separate style rules are easier to extend and maintain than inline
styles, and should generally be used. Inline style rules reduces the
flexibility inherent in style files. Inline styles are useful however, in

c© USQ, June 12, 2012

http://www.sci.usq.edu.au/courses/CSC2406/semester2/build/Site.css
http://www.sci.usq.edu.au/courses/CSC2406/semester2/build/Site.css

72 Chapter 3 Cascading Style Sheets

modifying a style in a one-off manner—required for one page only.
This normally happens when the generic style chosen for an element
throughout a site is not quite suitable in one or two instances—inline
modifications are better than adding all possible variations in a site
style file—as the site style file would soon grow unwieldy

3.4 Specifying Style Rules

HTML elements are customised by the use of style rules. An example
of a rule to modify the colour and size of all H1 elements is

h1 {color: green;
font-size: xx-large;
}

This rule consists of the selector (h1), the property (color) and the
value (green). The property/value pairs of a selector can be grouped
between braces and separated by semi-colons. The most basic type
of selectors are simply the names of HTML elements. The properties
listed inside the braces apply to all occurrences of the element inside
the document.

3.4.1 Selectors

Style rules are normally defined by using a command of the following
form:

selector { property1: value1;
property2: value2;
...
propertyN: valueN

}

The style rules are applied to the specified selector. The common
selector type is an HTML element. HTML elements are not the only
selector type. The CSS standard allows a variety of selector types to
define formatting rules that only apply in certain situations. The six
categories of selectors are:

• HTML elements

• HTML elements in certain contexts

• User defined classes

• User defined IDs

• Pseudo classes

• Pseudo elements.

HTML Elements

Property settings are inherited, that is, elements inherit the properties
from parent elements (outer elements) if the property has not been
explicitly set. For example, suppose the H1 element has the EM element
inside it:

c© USQ, June 12, 2012

3.4 Specifying Style Rules 73

<h1>This Headline is important!</h1>

If the colour for the H1 element has been set to blue and no colour has
been assigned to the EM element it will then inherit the colour of the
parent element, that is blue.

To set a default property for all HTML elements, then the property
can be defined for the BODY element, which all elements should inherit
from1.

Elements can be grouped in comma separated lists to allow common
styles to be set for multiple HTML elements. For example:

h1, h2, h3, h4, h5, h6 { color: olive;
font-family: sans-serif }

would set all header elements, rather than setting each one individu-
ally.

Contextual HTML Elements

Inheriting properties is the default action when styles are defined.
Sometimes this is not convenient. For example, consider the following
styles:

body { color: blue; }
h1 { color: red; }
em { color: red; }

This sets the main body to blue text, top-level headings to red, and
emphasised text to red. This means that emphasised text within a top-
level heading will not be distinguishable from the rest of the heading.
So, a rule can be added to specify that emphasised text be green only
when inside top-level headings, as follows:

h1 em { color: green; }

That is, the style is only applied when the EM element is a “descendant”
of an H1 element. The relationship can be arbitrarily deep. To specify
a direct “child” element use the child-selector > as follow:

h1 > em { color: green; }

In this case the EM element must be a direct child of an H1 element.

There is also a selector for adjacent siblings—a +. This selector will
matches if two elements share the same parent and are adjacent to
each other. For example—

h1 + h2 { margin-top: -0.5ex; }

will reduce the white space at the top of the H2 element only if it
directly follows an H1 element—thus reducing the white space between
the two header elements.

1 In some browsers the inheritance of properties, are at best, imperfectly implemented!
So be wary.

c© USQ, June 12, 2012

74 Chapter 3 Cascading Style Sheets

Author Defined Classes

A greater control is given to the author, by the use of selector classes.
A class name can be added to an HTML element. For example, to de-
fine an “abstract” paragraph style with indented left and right margins
and italic text, the following style could be defined:

p.abstract { margin-left: 4em;
margin-right: 4em;
font-style: italic

}

This defines the class “abstract” for the P element.

To use this class in a HTML document, the class name is used as the
value for the HTML attribute CLASS. For example:

<h1>Smoothed Particle Hydrodynamics</h1>
<p class="abstract">
Smoothed Particle Hydrodynamics (SPH) is a Lagrangian
method that calculates spatial derivatives on a
distribution of interpolation points.
</p>

All HTML elements have the attribute CLASS.

In the example above the class “abstract” can only be used with the
P element. Classes can be defined that can be used with any HTML
element. For example:

.blue { color: blue;
font-weight: bold

}
.big { font-size: larger; }

defines the classes “blue” and “big” which can be used with any HTML
element.

<h1 class="blue">The use of the class blue</h1>
The text you are reading is in the default colour
but by using the class blue,
this text is now blue and bold

This text is blue, bold and larger

As can be seen from the example above the value of the CLASS attribute
can contain multiple user defined classes—separated by white space.

Author Defined IDs

An ID is like a class, but can only be applied once in a document.
It is defined by preceding the name with a # and referenced with the
HTML attribute ID, as follows

<head>
<title>ID example</title>
<style type="text/css">
<!--
#title {color: red}

c© USQ, June 12, 2012

3.4 Specifying Style Rules 75

h2#color {color: green}
-->

</style>
</head>
<body>
<h1 id="title">The use of the ID attribute</h1>
...
<h2 id="color">Green header, but only once</h2>
</body>

The ID has major importance, not so much with CSS, but with uniquely
defining elements for dynamic modification using Javascript and/or
CGI scripts.

Pseudo-Classes and Pseudo-Elements

As seen above style can be attached to elements based on their name
or position in the document. Pseudo-classes and elements are used
to be able to select characteristics of the document after it has been
formatted or as the client interacts with the document—information
not available before the document is loaded.

:link This selector matches unvisited anchor elements

:visited This selector matches visited anchor elements

:hover This selector matches the element that has the cursor hovering
over it.

:active This selector matches the element that is currently active—the
period between a button press and a button release.

:focus This selector matches the element that has the keyboard focus.

:first-line This selector matches the first line of a paragraph.

:first-letter This selector matches the first character of the first line of a block
of text.

This list is incomplete though it contains the most useful pseudo
classes and elements. See the CSS2 reference for more information
on pseudo classes and elements.

3.4.2 Precedence Rules

There are often multiple style rules that can apply to a particular
section of text, and the browser needs to know the order in which to
apply them. The rules with the highest precedence are applied last so
that they replace conflicting values from lower priority rules. The rules
for determining the precedence (or “cascading”) order are as follows:

(a) Rules marked important have the highest priority. To mark a
style rule as important the tag “!important” is appended. For
example;

body {color: white !important;
background-color: black !important;

}

c© USQ, June 12, 2012

76 Chapter 3 Cascading Style Sheets

These declarations are used sparingly, if at all. Reader’s rules
marked !important have precedence over author rules marked
!important (cf. below).

(b) Authors rules have precedence over reader’s rules. Browsers that
permit readers to specify style rules to override the defaults, will
give higher priority to the author’s rules (cf. above)

(c) More specific rules have precedence over less specific rules. In
general ID attributes have a higher priority to CLASS attributes,
which have a higher priority to element rules. (see the CSS stan-
dard for a more detailed discussion of the specificity of rules.)

H1#fore {color: black; }
.fore {color: blue; }
H1.fore {color: green; }

All <H1 class="fore">...</H1> contents will be green and the
<H1 id="fore">...</H1> will be black.

(d) If there is a tie with the specificity of rules then the last rule has
precedence.

3.4.3 Property URLs

There are a number of situations where URLs have to be defined in
style sheets. For example, when importing different style documents,
or when specifying a background image.

When specifying an URL as the value of a property the URL must be
contained in a url(...) construct. For example:

body { background-image: url(pattern.jpg) }

The specified URL can be relative to the current document or an
absolute URL. The normal character escape rules for URLs apply.

3.4.4 Property Units

Cascading style sheets allow authors to specify sizes and colour in a
variety of different units.

Lengths

Lengths can be specified in relative units or absolute units. Relative
units specify a length relative to another length property.

Note Style sheets that use relative units will more easily scale from
one medium to another (screen to printer), and are more likely
to display clearly on different screens.

So where ever possible (which is almost everywhere) never use
absolute or “physical” units use relative units.

c© USQ, June 12, 2012

3.4 Specifying Style Rules 77

Relative Units

em The width of the letter “m” in the current font.

ex The height of the letter “x” in the current font.

px Pixels—relative to the current viewing device. Pixels should be
avoided as the current size of the viewing device is unknown!

Absolute Units

pt Points—used in typesetting. There are 72 points to the inch.
One inch is 2.54 cm.

pc Picas—used in typesetting. There are 6 picas per inch. One inch
is 2.54 cm.

in Inches. One inch is 2.54 cm.

cm Centimetres.

mm Millimetres.

Wherever possible, the best units to use from the list above are em and
ex—as these are defined relative to the current font-size. For example,
white-space around text defined using em or ex will grow and shrink
with the size of the text—making it look good on all monitors

Specifying font sizes in points—the traditional typesetting way—is to
be avoided as you do not know the default font size the client has
chosen in their browser. Client font size will be chosen based on the
clients screen resolution, size of monitor, distance from monitor, and
eyesight—all things you as the author know nothing about and cannot
control.

Example 3.9: The default font size for Internet Explorer is quite
large. As most clients never change the default size—web authors
have got into the habit of specifying font-sizes explicitly as 9 or
10 points. Which can become unreadable if you have a large
monitor, set at arms length and with the default font-size set to
14 points to avoid eye strain (as mine is).

Percentage Units

Percentage values are always relative to another value, for example a
length unit. Each property that allows percentage units also defines
what value the percentage value refer to.

Colours

A colour is a either a keyword or a numerical RGB specification. (See
Section 4.1 on a more detailed discussion of colours.)

color-name This is one of 17 standard colours listed in Table 4.1

#rrggbb Standard six character hexadecimal notation for colour.

c© USQ, June 12, 2012

78 Chapter 3 Cascading Style Sheets

#rgb Shorthand three character hexadecimal notation. This is con-
verted to the standard six letter notation. For example: #0AF

will be converted to #00AAFF

rgb(rrr,ggg,bbb) The integer values rrr, ggg, bbb are in the range 0 to 255. For
example:

h1 { color: rgb(200,0,255); }

rgb(rrr%,ggg%,bbb%) The floating values rrr, ggg, bbb are in the range 0.0 to 100.0.
For example:

h1 { color: rgb(50%,0%,100%); }

Exercise 3.10: When designing menus for a web page many au-
thors use images as they are of fixed width—which means they
can easily align the menus. Explain why using images is not a
good idea. Explain how menus constructed using text can have
a known width without knowing anything about the font used in
the browser.

3.5 Font Properties

The font properties allow the author to specify several aspects of the
rendered font: style, family, size and weight.

The properties that follow are not complete. For a complete list of
font properties consult the CSS standard.

font-family This property specifies a prioritised list of type faces. The list of
family names is separated with comas. For example:

body { font-family: gill, helvetica, sans-serif; }

The font family can be a specific font family, for example gill

or helvetica, or a generic font family, such as sans-serif.

The available generic font families are serif, sans-serif, cursive,
fantasy and monospaced.

Generic font families are preferred over specific font families, as
the author cannot assume the font families available to the user’s
browser.

font-style This properties has values italic, normal and oblique, and
selects the font face within a font family.

font-variant This property has two values normal and small-caps

font-weight The weight of the font can be specified with the values normal,
bold, bolder, lighter.

The CSS also specifies the values 100, 200, 300, 400, 500, 600,
700, 800, 900. Where normal is synonymous with 400 and bold

with 700.

font-size Font size can specified either absolute or relative:

c© USQ, June 12, 2012

3.5 Font Properties 79

Absolute Units

Symbolic size Absolute symbolic sizes are xx-small, x-small, small, medium,
large, x-large, or xx-large.

Length units Absolute length units. See §3.4.4.

Relative Units

Symbolic size Relative symbolic sizes are smaller or larger.

Length units Relative length units. See §3.4.4.

Percentage Percentages are calculated relative to the parent element’s
font size.

Relative units or Symbolic sizes are preferred as they will be based on
the default size chosen by the client—something as author, you know
nothing about.

Example 3.11: The following is an example of using the font-family
property to create different H2 headings

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE HTML PUBLIC

"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

<head>
<title>CSS: Font Families</title>
<style type="text/css">

<!--
H2.serif {font-family: "new century schoolbook", serif;

color: blue;}
H2.cursive {font-family: "zapf chancery", cursive;

color: blue;}
H2.sansserif {font-family: helvetica, sans-serif;

color: blue;}
H2.mono {font-family: courier, monospaced;

color: blue;}
-->
</style>
</head>
<body>
<h1>CSS: Font Families</h1>

<h2 class="serif">Serif Fonts</h2>
Serif fonts tend to have a relatively narrow, upright
shape with distinctive serifs across the end of the
letter strokes. Serif font faces are generally considered
to have a classic, formal, businesslike font style that
is reliable for the Web.

<h2 class="sansserif">Sans-Serif Fonts</h2>
Sans serif fonts have a very regular, often geometrical
shape with no serifs on the end of the letter strokes.
Sans-serif font faces are generally considered to have a
simple, clean, modern font style that is reliable for the Web.

c© USQ, June 12, 2012

80 Chapter 3 Cascading Style Sheets

Figure 3.5: One possible rendering of the generic fonts of Example 3.11.

c© USQ, June 12, 2012

3.5 Font Properties 81

Figure 3.6: One possible rendering of the font properties of Example 3.12.

<h2 class="cursive">Cursive Fonts</h2>
Cursive fonts have a hand written style and are usually
inclined. Cursive font faces have a wide variety of font
styles, so are best used cautiously on the Web,

<h2 class="mono">Monospaced Fonts</h2>
Monospace fonts have a fixed width like typewriters and
often have strong angular or block serifs. Monospace font
faces are often used code samples and have a simple,
functional font style.
</body>
</html>

Figure 3.5 shows the rendered page using the generic font families.

Example 3.12: The following is an example of using font properties
with the SPAN element.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE HTML PUBLIC

"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

<head>
<title>CSS: Font Families</title>
<style type="text/css">

<!--
h1 { font-weight: bold;

font-family: sans-serif;
font-size: x-large;
color: green; }

samp { font-size: larger; }
.bold { font-weight: bold; }
.italic { font-style: italic; }
.bolditalic { font-style: italic;

font-weight: bold;
color: maroon; }

-->
</style>
</head>
<body>
<h1>CSS: Font Properties</h1>
The <samp>SPAN</samp> element can be used to change text
properties within a line of text.

c© USQ, June 12, 2012

82 Chapter 3 Cascading Style Sheets

For example, the preceding
text become bold-italic,
by using the “bolditalic”
class.
</body>
</html>

Figure 3.6 shows one possible rendering of the font properties
used in this example.

3.6 Foreground and Background Properties

Cascading style sheets support changing the foreground colour, back-
ground colour, and background images for regions of text. If fore-
ground colours are to be changed then background colours should also
be changed. The author cannot assume the default colours of the user,
if text is not to disappear into the background then the author of the
style sheet should explicitly define all colours.

Note Do not assume that the default background colour of all browsers
is white! The user can change the default background colour of
the browser—I set it it to a light-grey or off-wite as they are less
fatiguing colours than a brilliant white.

If you assume white then set it in your style sheet.

The properties that follow are not complete. For a complete list of
foreground and background properties consult the CSS standard.

color Specify the foreground, or text colour of the element.

background-color Specify the background colour of the element. If the keyword
transparent is used then an inherited colour will show through.

background-image This specifies the image to use as the background of the element.
Authors should always supply a background colour to use if the
image is unavailable or the user has disabled image loading.

background-repeat This property specified how the image is to be tiled. The possible
values are:

repeat Tile the image in both directions

no-repeat Display the image once only. Do not tile.

repeat-x Tile the image in the x-direction only.

repeat-y Tile the image in the y-direction only.

background-attachment This property determines if the background image scrolls with
the content (value: scroll, the default action) or is fixed (value:
fixed).

background-position This property specifies the initial position of the image with re-
spect to the upper left hand corner of the element it is associated
with. The position is specified as a pair of values. The first is the
horizontal position the second is the vertical position. Allowable
horizontal values are left, center, right, a percentage distance,

c© USQ, June 12, 2012

3.6 Foreground and Background Properties 83

or a distance in standard units. Allowable vertical values are top,
middle, bottom, a percentage distance, or a distance in standard
units. In percentage units 0% 0% is the top-left corner, and 100%

100% is the bottom-right.

Negative positions are permitted, allowing images to hang into
margins or previous text sections.

c© USQ, June 12, 2012

84 Chapter 3 Cascading Style Sheets

Figure 3.7: One possible rendering of Example 3.13.

c© USQ, June 12, 2012

3.6 Foreground and Background Properties 85

Example 3.13: An example using background images.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE HTML PUBLIC

"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

<head>
<title>Mulga Bill’s Bicycle</title>
<style type="text/css">

<!--
body { color: black;

background: #b4eeb4;
margin-left: 235px;
background-image: url(mbill1f.png);
background-repeat: no-repeat;
background-attachment: fixed;}

h1#heading { font-family: sans-serif;
font-size: xx-large;
font- weight: bold;
color: #073107; }

div#poem { background-image: url(mbill2f.png);
background-repeat: no-repeat;
background-attachment: scroll;
background-position: bottom right;}

div#poem pre { font-family: sans-serif;
margin-bottom: 2em; }

div#poem pre.even { margin-left: 5em; }
div#poem pre.odd { margin-left: 0pt; }
div#poem div.author { margin-left: 15em;

font-style: italic;}
-->

</style>
</head>
<body>
<h1 id="heading">Mulga Bill’s Bicycle</h1>
<div id="poem">

<pre class="odd">
’Twas Mulga Bill, from Eaglehawk, that caught the cycling craze;
He turned away the good old horse that served him many days;
He dressed himself in cycling clothes, resplendent to be seen;
He hurried off to town and bought a shining new machine;
And as he wheeled it through the door, with air of lordly pride,
The grinning shop assistant said, “Excuse me, can you ride?”
</pre>
<!--Full text of HTML page available from course web site-->
<div class="author">A.B. ‘Banjo’ Patterson

The Sydney Mail, 25 July 1896
</div>

</div>
</body>
</html>

Figure 3.7 shows the rendered page.

c© USQ, June 12, 2012

86 Chapter 3 Cascading Style Sheets

3.7 Text Properties

The text properties control the way text in a paragraph is laid out.
This applies not just to the text in a paragraph but also to the inline-
elements found in the paragraph—in particular the IMG element.

The properties that follow are not complete. For a complete list of
text properties consult the CSS standard.

word-spacing This property specifies a change to the default spacing between
word. Values are expressed using the standard length units. Pos-
itive values indicate an increase, negative values indicate a de-
crease.

letter-spacing This property specifies a change to the default spacing between
characters. Values are expressed using the standard length units.
Positive values indicate an increase, negative values indicate a
decrease.

text-decoration As the name suggests, this property specifies text “decorations”.
That is, none, underline, overline, line-through, and blink

(this should never be used as it is too distracting on a page).
An example is to make hypertext-text links blue, without an
underline:

:link { color: blue; text-decoration: none }

vertical-align This property determines how elements are positioned vertically.
The value indicates how far to raise or lower the baseline of the
element, relative to the parent element. A percentage value is
relative to the line height of the element itself. Allowed symbolic
values are:

baseline Align the baseline of the element with its parent.

middle Align the midpoint of the element with the baseline plus half
the x-height of the parent (experiment with this one).

sub Subscript the element.

super Superscript the element

text-top Align the top of the element with the top of the parent ele-
ment’s font.

text-bottom Align the bottom of the element with the bottom of the par-
ent element’s font.

top Align the top of the element with the tallest element on the
line

bottom Align the bottom of the element with the lowest element on
the line

text-transform Transform the text to all uppercase (uppercase), to lowercase
(lowercase), have the first letter of each word uppercase (capitalize),
or neutralise inherited transforms (none).

text-align This property describes how text is aligned within the element.
The possible values are left, right, center, and justify.

c© USQ, June 12, 2012

3.8 Bounding Box Properties 87

text-indent This property specifies the indentation of the first line of a para-
graph. It is calculated with respect to the existing left margin
as specified by margin-left (see below). Values can be normal
length units or can be percentages relative to the parent elements
width.

line-height This property specifies the height of each line. This is the distance
between two consecutive baselines in a paragraph. In addition to
the standard length units, a percentage value can be supplied,
interpreted with respect to the font size.

Example 3.14: The XHTML element IMG is by default an inline
element. It is used to embed and image into a line of text. How
the embedded image is to align with the text can be configured
using CSS text properties for vertical alignment and the float

property to allow text to flow around the image. Figure 3.8 shows
the different alignment effects.

3.8 Bounding Box Properties

Cascading style sheets assume that all elements will result in one or
more rectangular regions. This region is known as the “bounding box”
and contains a margin, border, padding area and the contents of the
box, each nested within the other. Figure 3.9 illustrates the bounding
box.

The properties that follow are not complete. For a complete list of
bounding box properties consult the CSS standard.

The width and height of the total box is the sum of the width and
heights of the main element, the padding that surrounds it, the bor-
der surrounding the padding, and the margins surrounding the bor-
der. Margins are always transparent, letting the colour and/or image
underneath to show through. The padding always takes on the back-
ground colour or image of the element. The border, can have its own
background.

Note The default value for the properties width, height and margin
are ‘auto’. That is, the browser will automatically assign these
values based on box contents and floating rules.

How all the rules interact to prodcue the final values can be
complex and confusing—if a box is not bahving in the way you
expect you need to read carefully the CSS reference on computing
height, width and margins.

Note Though CSS defines margins for every element, how margins in-
teract is not at all clear. As a rough rule of thumb, horizontal
margins are always counted when placing boxes side-by-side, ver-
tical margins collapse—only the widest margin of two vertically
stacked boxes is used. Unless the box has been “floated” or “ab-
solutely” positioned (see Section 3.9 below) then margins do not
“collapse”.

c© USQ, June 12, 2012

88 Chapter 3 Cascading Style Sheets

Figure 3.8: Using style commands to align an inline image with the sur-
rounding text.

c© USQ, June 12, 2012

3.8 Bounding Box Properties 89

Margin

Border

Padding

Content

Element Width

Box Width

Figure 3.9: Illustration of an element bounding box

See the CSS reference for a detailed and confusing description of
collapsing margins.

width This property sets the width of the bounding box overriding the
default width which is determined from the contents. The width
is specified using normal length units, percentages or the keyword
auto.

height This property sets the height of the bounding box overriding the
default height which is determined from the contents. The height
is specified using normal length units, percentages or the keyword
auto.

margin-left This property sets the left margin using normal length units,
percentages or the keyword auto. Negative values are permitted;
though the result is implementation specific.

margin-right This property sets the right margin using normal length units,
percentages or the keyword auto. Negative values are permitted;
though the result is implementation specific.

margin-top This property sets the top margin using normal length units,
percentages or the keyword auto. Negative values are permitted;
though the result is implementation specific.

margin-bottom This property sets the bottom margin using normal length units,
percentages or the keyword auto. Negative values are permitted;
though the result is implementation specific.

border-left-width This property sets the width of an element’s left border, using
normal length units, or the keywords thin, medium, or thick.
Border widths cannot be negative.

c© USQ, June 12, 2012

90 Chapter 3 Cascading Style Sheets

border-right-width This property sets the width of an element’s right border, using
normal length units, or the keywords thin, medium, or thick.
Border widths cannot be negative.

border-top-width This property sets the width of an element’s top border, using
normal length units, or the keywords thin, medium, or thick.
Border widths cannot be negative.

border-bottom-width This property sets the width of an element’s bottom border, using
normal length units, or the keywords thin, medium, or thick.
Border widths cannot be negative.

border-color This sets the border colours. One to four values can be supplied,
specifying the colour of the top, right, bottom, and left borders.
If only one colour is supplied it applies to all four borders. If two
or three colours are supplied, colours for any missing border are
taken from the border directly opposite.

border-style This property specifies the way in which the borders will be
drawn. One to four values are supplied, specifying characteristics
for the top, right, bottom, and left borders in the same manner as
border-color. Each value can be one of none, dotted, dashed,
solid, double, groove, ridge, inset, and outset.

padding-left This property sets the width of the padding on the left of the
element, using normal length units, or percentages. Percentages
are interpreted with respect to the parent element’s width and
height.

padding-right This property sets the width of the padding on the right of the
element, using normal length units, or percentages. Percentages
are interpreted with respect to the parent element’s width and
height.

padding-top This property sets the width of the padding on the top of the
element, using normal length units, or percentages. Percentages
are interpreted with respect to the parent element’s width and
height.

padding-bottom This property sets the width of the padding on the bottom of the
element, using normal length units, or percentages. Percentages
are interpreted with respect to the parent element’s width and
height.

Example 3.15: An example of using the bounding-box to modify
an H1 header.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE HTML PUBLIC

"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

<head>
<title>CSS: STYLE example</title>
<style type="text/css" media="screen">

<!--

c© USQ, June 12, 2012

3.8 Bounding Box Properties 91

Figure 3.10: One possible rendering of Example 3.15.

body { margin: 0px;
padding: 0px;

}
h1.boxed { font-weight: bold;

font-family: sans-serif;
font-size: xx-large;
text-align: center;
color: yellow;
background-color: maroon;
padding-top: 2ex;
padding-bottom: 2ex;
padding-left: 2.5%;
padding-right: 2.5%;
width: 50%;
margin-left: 22%;
margin-right: 22%;
margin-top: 4ex;
margin-bottom: 4ex;
border-color: green;
border-style: ridge;
border-left-width: 6px;
border-top-width: 6px;
border-bottom-width: 6px;
border-right-width: 6px;

}
-->
</style>

</head>
<body>
<h1 class="boxed">Example of using the box properties of an
element</h1>

c© USQ, June 12, 2012

92 Chapter 3 Cascading Style Sheets

</body>
</html>

Figure 3.10 shows the rendered header.

Exercise 3.16: Consider the CSS for Example 3.15 above. Explain
why the horizontal percentages do not add to 100%—but the
heading looks centred (on my browser at least). Why?

Is the heading still centred (if it was) if the browser’s horizontal
width is changed?

Exercise 3.17: Example 3.15 gives one method of centering a box
horizontally—by having the box witdth, padding and margin add
to 100%.

But with the inclusion of a fixed border width it starts to become
problematic. One way to overcome this problim is to get the
rendering engine to calculate the widths for you—this is done by
specifying the value auto on the left and right margin.

Rewrite Example 3.15 using the value auto (instead of percent-
ages) for left/right margins, padding and width. Be systematic
only make one change at a time. What are the results?

Example 3.18: The Beowulf translation example from the XHTML
module has been modified using style properties. With style
sheets turned off, the new rendered document is identical to the
old vanilla XHTML rendering, with style sheets turned on, the
page is considerably changed.

3.9 Box Positioning Properties

In CSS many box positions and sizes are calculated with respect to
the edges of a rectangular box called a containing block. In general,
generated boxes act as containing blocks for descendant boxes; that is
a box defines the containing block for its descendants.

Each box is given a position with respect to its containing block, but it
is not confined by this containing block; it may overflow it. The BODY

element generates a box that serves as the initial containing block for
subsequent layout.

When an HTML page is constructed—boxes are laid out one after
another, vertically beginning at the top of the containing block with
each box’s left outer edge touching the left edge of the containing
block. The boxes are laid out as they are encountered in the HTML
document–this is called the “normal flow”. The normal flow of the
document can be modified by moving boxes around the page.

Apart from “normal flow” CSS has two other positioning schemes:
Float and Absolute positioning.

c© USQ, June 12, 2012

3.9 Box Positioning Properties 93

Figure 3.11: Addition of style commands to Beowulf Translation originally
used in the XHTML module 2.

c© USQ, June 12, 2012

94 Chapter 3 Cascading Style Sheets

Figure 3.12: The home page for the Toowoomba Company of Archers Inc.
without style commands.

Floating Positioning Scheme

A box is first laid out according to the normal flow, then taken out
of the flow and shifted to the left or right as far as possible. Content
may flow along the side of a float.

float This property specifies whether a box should float to the left ,
right, or not at all—with values: left, right or none respec-
tively.

clear This property controls flow around a floated box. It indicates
which sides of an element’s box may not be adjacent to an earlier
floated box. If the value is—

left then this box will be pushed below any left-floated boxes.

right then this box will be pushed below any right-floated boxes.

both then this box will be pushed below any floated boxes.

none there is no constraint on the box’s position with respect to
floats.

Example 3.19: In the course examples directory for this module
can be found the welcome page for the Toowoomba Company
of Archers Inc. web site. The page uses CSS commands for all
formatting.

c© USQ, June 12, 2012

3.9 Box Positioning Properties 95

Figure 3.13: The home page for the Toowoomba Company of Archers Inc. with style sheets.

c© USQ, June 12, 2012

96 Chapter 3 Cascading Style Sheets

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xml:lang="en"
xmlns="http://www.w3.org/1999/xhtml"
lang="en">

<head>
<title>Toowoomba Company of Archers Inc.</title>
<link rel="stylesheet"

href="TCA.css"
title="Site Style Sheet"
type="text/css">

</head>

<body>
<div class="header">
<h1>Toowoomba Company
 of Archers Inc.</h1>

</div>

<div class="menu">

<li class="current">

Home
Contacts
News
Venues
Competition
Calendar
Insurance
Members

</div>

<div id="border">
<div class="Top">
<div class="TopRight">
<div class="TopLeft"></div></div></div>

<div class="Left">
<div class="Right">

<div class="contents">

<div class="LeftPadding1"> </div>
<div class="LeftPadding2"> </div>
<div class="LeftPadding3"> </div>
<div class="LeftPadding4"> </div>
<div class="LeftPadding5"> </div>
<div class="LeftPadding6"> </div>
<div class="LeftPadding7"> </div>
<div class="LeftPadding8"> </div>
<div class="LeftPadding9"> </div>

Toowoomba Company of Archers Inc. (TCA)
is a not for profit sports club

c© USQ, June 12, 2012

3.9 Box Positioning Properties 97

...

Figure 3.12 shows the page without style commands and Figure
3.13 shows the page with style commands.

Exercise 3.20: Explain why and how the first dozen lines of the
page of Example 3.19 are indented.

Exercise 3.21: Load the page from Example 3.19 into your browser
and experiment changing the dimensions of your browser page.
How does the formatting change for the page? Change the default
size of the browsers fonts—how is the page style affected?

Absolute Positioning Scheme

A box is removed from the normal flow entirely and assigned a position
with respect to a “containing block”.

position This property specifies how a box is to be positioned relative to
the “containing block”. It can have the values:

static The box is a normal box, laid out according to the normal
flow

relative The box is offset relative to its normal position. When a box
is relatively positioned, the position of the following box is
calculated as though it were not offset.

absolute The box is offset relative to the box’s containing block. Ab-
solutely positioned boxes are taken out of the normal flow.

fixed The box is fixed with respect to the view-port and will not
scroll. Fixed boxes are taken out of the normal flow.

Box offsets can be specified using absolute lengths or relative percent-
ages. Percentages are relative to the “containing block”.

left This property specifies how far a box’s left edge is offset to the
right of the left edge of the box’s “containing block”.

right This property specifies how far a box’s right edge is offset to the
left of the right edge of the box’s “containing block”.

top This property specifies how far a box’s top edge is offset below
the top edge of the box’s “containing block”.

bottom This property specifies how far a box’s bottom edge is offset above
the bottom of the box’s “containing block”.

With absolute positioning the definition of what is the “containing
block” changes depending on the absolute positioning method (See
Chapter 10 of the CSS2 reference)—

• If the positioning is relative or static then the “containing block”
is the block-level, table-cell or inline-block of the nearest ancestor.

• If the positioning is fixed the containing block is the browser
window or the page area (for print media).

c© USQ, June 12, 2012

98 Chapter 3 Cascading Style Sheets

• If the position is absolute the containing block is the nearest
ancestor with a position of absolute, relative or fixed.

3.9.1 Classification Properties

These properties classify elements into categories more than they set
specific rendering properties.

The properties that follow are not complete. For a complete list of
classification properties consult the CSS standard. Only some of the
following properties are implemented by browsers. Which property is
recognised by which browser is a matter of trial and error.

display This property describes how an element is to be displayed on the
page. If the value is block, the element is displayed within a
new separate box. Examples of block elements are H1, and P. A
value of list-item is similar to block except that a list item
marker is added. The element LI is an example of a list-item.
A value of inline results in a new inline box on the same line
as the previous content. A value of none turns off the display of
the element.

A value of none; for the display property is useful for navigation
menus—all pages can have all menus but only the relevant menus
are made visible. This is extremely useful as a default template
page can be constructed for a site and only the relevant parts are
displayed.

white-space This property declares how whitespace inside the element is han-
dled. A value of normal means that whitespace is collapsed (the
default). A value of pre means that whitespace is handled as
in the PRE element. A value of nowrap means text will not be
wrapped.

list-style-type This property is used to determine the list-item marker. Pos-
sible values are disc, circle, square, decimal, lower-roman,
upper-roman, lower-alpha, upper-alpha, and none.

list-style-image This property sets the image that will be used as the list-item
marker.

list-style-position The value of this property determines how the list-item marker
is drawn with respect to the text in the list item. A value of
inside means that the text aligns with the marker, a value of
outside means that the marker is to the left of the aligned text.

Example 3.22: Absolute positioning and modifying the display prop-
erty of elements is used in the Dynamic Menus example that can
be found in the CSS Examples page on the course web site.

3.10 DIV and SPAN Elements

The HTML element DIV is a block level element that does little in
itself. Used in conjunction with property styles the DIV element be-
comes a powerful tool for changing the styles of text blocks.

c© USQ, June 12, 2012

3.10 DIV and SPAN Elements 99

The text level element SPAN, like DIV does little in itself. This ele-
ment does not have any attributes, but used in conjunction with style
properties can change text level styles.

The elements DIV and SPAN where introduced into the HTML language
purely as a way off adding style to the rendered document where an
existing logical element is not really appropriate.

Example 3.23: An example of using the generic block element DIV
to modify the style of its contents—

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE HTML PUBLIC

"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

<head>
<title>Rime of the Ancient Mariner</title>
<style>
<!--
div.poem { text-align: center;

line-height: 150%;
font-size: larger;}

div.poem pre { font-family: serif;
margin-bottom: 2em;}

div.author {font-style: italic;
text-align: right;}

->
</style>

</head>
<body>
<div class="poem">
<h1>The Rime of the Ancient Mariner</h1>
<h3>Part IV</h3>
<pre>
“I fear thee, ancient Mariner!
I fear thy skinny hand!
And thou art long, and lank, and brown
As is the ribbed sea-sand.
</pre>
<pre>
I fear thee and thy glittering eye,
And thy skinny hand, so brown.”
“Fear not, fear not, thou Wedding-Guest!
This body dropped not down.
</pre>
<pre>
Alone, alone, all, all alone,
Alone on a wide wide sea!
And never a saint took pity on
My soul in agony.
</pre>
<pre>
The many men, so beautiful!
And they all dead did lie:

c© USQ, June 12, 2012

100 Chapter 3 Cascading Style Sheets

Figure 3.14: One possible rendering of the style of Example 3.23.

c© USQ, June 12, 2012

3.11 Questions 101

And a thousand thousand slimy things
Lived on; and so did I
</pre>
<pre>
…
</pre>
</div>

<div class="author">
Samuel Taylor Coleridge
</div>
</body>
</html>

Figure 3.14 shows the rendered page.

Note CSS gives so much power to the author with user defined classes,
that authors could design their own “document language” based
on DIV and SPAN, by assigning style information through the
“class” attribute.

Authors should avoid this practice since the elements of HTML
have recognised and accepted meanings where DIV and SPAN with
author-defined classes will not.

Do not over-use DIV and SPAN!

3.11 Questions

Short Answer Questions

Q. 3.24: What is a property in the style sheet language. Give an
example.

Q. 3.25: Why have tables been used as layout engines in HTML?

Q. 3.26: Why should Style Sheets be used where possible?

Q. 3.27: Why can frames cause navigation problems?

Q. 3.28: Write a basic frameset document.

Q. 3.29: Write a basic 2x2 table.

Q. 3.30: Why are frames given “names”?

Q. 3.31: What is the rendering difference between the TD element
and the TH element?

Q. 3.32: What is a selector in the style sheet language? Give an
example.

Q. 3.33: How is the SPAN element used within HTML documents?

Q. 3.34: How are browser windows “targetted”?

c© USQ, June 12, 2012

102 Chapter 3 Cascading Style Sheets

3.12 Further Reading and References

• The examples directory for this module.

• The World Wide Web consortium HTML4.0 definition can be
found in the course resources directory. This definition of HTML
has been implemented by all browsers.

• The World Wide Web consortium XHTML1.0 definition can be
found in the course resources directory. This definition of XHTML
has been implemented by all browsers.

• The World Wide Web consortium Cascading Style Sheets (Level
2) definition can be found in the course resources directory.

c© 2010 Leigh Brookshaw
c©2003 Leigh Brookshaw and Richard Watson

Department of Mathematics and Computing, USQ

(This file created: June 12, 2012)

c© USQ, June 12, 2012

http://www.sci.usq.edu.au/courses/CSC2406/semester2/sb/examples/css/
http://www.sci.usq.edu.au/courses/CSC2406/semester2/resources/html/html40.pdf
http://www.sci.usq.edu.au/courses/CSC2406/semester2/resources/html/xhtml10.pdf
http://www.sci.usq.edu.au/courses/CSC2406/semester2/resources/css/css2.pdf
http://www.sci.usq.edu.au/courses/CSC2406/semester2/resources/css/css2.pdf

Chapter 4 Graphics

The Web for most people is a “visual medium”. Correct image use
on the Web is not just a matter of design and taste. It requires an
understanding of the various image formats, so a designer can use the
correct format in the correct situation without compromising quality.

This chapter will discuss the technical details of the major image for-
mats used in the Web and the HTML commands used for displaying
images and image-maps.

Chapter contents
4.1 Pixels and Colour 103
4.2 Image Formats 106

4.2.1 Raster Formats 106
4.2.2 Vector Formats 111

4.3 Images as Anchors 117
4.3.1 Server-side Image Maps 118
4.3.2 Client-side image maps 120
4.3.3 Creating map descriptions 121

4.4 Questions 122
4.5 Further Reading and References 122

4.1 Pixels and Colour

A monitor (computer, TV, projector etc.) is composed of numerous
small dots or pixels (picture elements). On an LCD screen each pixel
is made up of three sub-pixels—a red sub-pixel, a green sub-pixel and
a blue sub-pixel (RGB). Ultimately, all image formats must describe
the image in terms of pixels.

The RGB colour palette is considered an additive form of colour,
because the red, green, and blue light from the sub-pixels in equal
amounts “add” up to white light. By controlling the relative intensity
of the three primary colours of the sub-pixels, arbitrary colours can
be generated.

Note The RGB colour cube is used for monitors—that is transmitive
colour devices. Reflective colour devices—paper, the most com-
mon colour scheme is cyan, magenta, yellow, and black (CMYK)
The colours seen on the printed paper are the parts of the spec-
trum reflected back to your eyes as white light hits the page. The
CMYK colour palette is a subtractive colour palette since, if you
mix the cyan, magenta, and yellow, they should absorb all the
colour from white light and you should get black. Due to impuri-
ties in all printing inks this does not happen, you don’t actually
get black, which is why black (or K) ink must be added.

104 Chapter 4 Graphics

The terms bit-depth or colour-depth are the terms used to describe the
number of bits used to describe colour in an image or on a monitor.
For a monitor the limitation on the number of bits used for each pixel
are dependent on the monitor and the video card’s memory. For an
image it is the image file format.

CSS defines colour using a set of predefined colour names or three
decimal numbers in the range 0–255 or 3 hexadecimal numbers in the
range 00–FF. The range 0–255 means the default colour depth is 24-
bit—8-bits for each colour channel. Table 4.1 lists the predefined CSS
colour names.

Note An important extension of RGB colour is RGBA—or 32-bit colour.
The extra channel is used as a transparency mask for each pixel.
On a monitor RGBA does not make sense as it is not transpar-
ent (when we get transparent monitors it will make sense)1 For
image formats RGBA is extremely useful when images are being
overlaid.

An understanding of bit depth is important for a web page author—as
the bit depth of a visitor’s monitor affects colour reproduction, and
the manipulation of bit depth in images can be used to significantly
decrease file size—and thus decrease download time.

The quality of a displayed image depends upon the quality of the
original image file and the display hardware. A major influence is the
number of discrete colour intensity levels, and the number of distinct
colours, which are used both to encode and to display the image. Our
eyes perceive a continuous range of intensity and colour in an image.
Digital computers can only reproduce discrete values, but if the system
can display a very large number of intensity and colour levels then it
is possible to produce a high quality image which compares well with
human perception.

Note Tests have shown that humans can not perceive colour variation
beyond 10 bits per channel—that is 30-bit true colour. This
implies that 8-bit per channel RGBA colour will be around for a
long time.

The number of colours and intensities present in an image file depends
upon the image creation hardware (e.g. scanner, digital camera), lim-
itations of the image format, and the way that the image has been
processed by image translation tools.

The number of colours and intensities visible in any image on the
computer screen depends upon the display hardware (monitor, video
card), and operating system configuration.

1 Video cards that advertise 32-bit colour are not increasing the colour depth—they still
only use 24-bit colour—they are increasing the data speed only. The video bus uses
4-byte words by padding pixel information, packing/unpacking of pixel information is
avoided and a faster data transmission occurs.

c© USQ, June 12, 2012

4.1 Pixels and Colour 105

Table 4.1: Predefined colour names in CSS

Colour Colour Name Hex. Equivalent

AQUA #00FFFF

NAVY #000080

BLACK #000000

OLIVE #808000

BLUE #0000FF

PURPLE #800080

FUCHSIA #FF00FF

RED #FF0000

GRAY #808080

SILVER #C0C0C0

GREEN #008000

TEAL #008080

LIME #00FF00

WHITE #FFFFFF

MAROON #800000

YELLOW #FFFF00

ORANGE #FFA500

c© USQ, June 12, 2012

106 Chapter 4 Graphics

4.2 Image Formats

An image format describes the colour and position information neces-
sary to create an on screen image. Ultimately the image format must
contain the information necessary to set the monitor’s pixel colours.
There are two basic image format varieties: raster or vector.

4.2.1 Raster Formats

In its raw form a raster or bitmap image is simply a collection of pix-
els of different colour values—it mimics the way the hardware displays
images. The term raster relates to the screen display hardware which
paints an image one display line or raster at a time. Each raster line
is a row of pixels. Due to the large number of pixels and colour infor-
mation in an image, raw bitmaps can be very large. Data compression
schemes are used to reduce the image size

Example 4.1: An uncompressed bitmap image of 800×600 pixels
with 24-bit colour information would take about 1MB to store
(800×600×24/8 bytes).

Given their potential large size, bit-mapped image formats almost
always employ some form of compression. There are two forms of
compression lossless and lossy. Lossless image compression means that
the compressed image is identical to the uncompressed image. Since all
the data of the image must be preserved, the degree of compression,
and the corresponding savings, can be minor—it critically depends
on the image itself. Lossy compression, on the other hand, does not
preserve the image exactly, and therefore can provide a much higher
degree of compression. With lossy compression, since data is discarded
images are smaller but the image quality will be degraded.

GIF

The Graphics Interchange Format (GIF) allows at most 256 colours
per image, where each colour is described by a set of 8 bit red/green/blue
intensity values. GIF files keep a colour table (with a maximum of 256
entries) or palette which describes every colour in the image; each pixel
in the image is denoted by its table item number (an 8 bit value) rather
than its 24 bit colour intensity value. Sometimes this is referred to as
indexed colour. This leads to a compact representation at the expense
of a reduced set of possible displayable colours.

Compression GIF images are compressed—using the Lempel-Ziv-
Welch (LZW) lossless compression scheme. The use of a colour table
together with compression results in a good compromise between im-
age quality and storage size. There are two GIF standards: GIF87a
and the later GIF89a. GIF89a added support for transparency and
animation.

The basic form of compression employed is called run-length encoding
(RLE). RLE looks for pixels with the same value and replaces the
“run” of identical pixels with one pixel and a count. This lossless

c© USQ, June 12, 2012

4.2 Image Formats 107

Figure 4.1: Demonstration of the GIF compression algorithm for a 600×600
pixel image

(1) 998 bytes

(2) 1440 bytes (3) 2286 bytes

(4) 1494 bytes (5) 7677 bytes

(6) 19532 bytes (7) 157725 bytes

c© USQ, June 12, 2012

108 Chapter 4 Graphics

Figure 4.2: Example of aliased and anti-aliased text

compression works well with large areas of continuous colour. Figure
4.1 shows the GIF compression scheme in practice. As can be seen
the run direction searched is along the horizontal direction (raster by
raster). Rotating an image can increase its size significantly.

Given the GIF formats difficulty in dealing with variability in images,
the format should only be used for illustrations and any images that
contain large amounts of continuous colour.

Dithering Since the GIF format can only represent 256 colours
simultaneously—any 24-bit colour image converted to GIF must re-
duce the number of colours in the image—millions of colours must be
remapped to 256. When remapping from a large number of colours
to a smaller colour palette dithering occurs. The process of dither-
ing attempts to create a colour outside the palette, by a diffusion of
coloured pixels from within the palette. Thus, creating the illusion of
the missing colour. Depending on the algorithms used to quantise a
24-bit image to a 256 colour palette the new smaller GIF image can
look very poor indeed.

Transparency GIF images also support the concept of transparency.
One bit of transparency is allowed, which means that one colour can
be flagged as transparent. Transparency allows the background that
an image is placed upon to show through. The problem with GIF
transparency is that it is 1-bit transparency—either on or off—which
causes problems with anti-aliasing. Anti-aliasing attempts to smooth
pixelated or jagged edges by blending one colour into another. Figure
4.2 shows the smoothing effect anti-aliasing has on text. If the trans-
parent colour has been blended on colour edges then a halo effect will
be created when transparency is used. Figure 4.3 demonstrates this
halo effect.

Exercise 4.2: Discuss two ways to avoid the anti-aliasing 1-bit trans-
parency halo problem using the GIF format.

Interlaced It can be frustrating to wait for an entire image to be
loaded before seeing it in completion. To alleviate this problem, the

c© USQ, June 12, 2012

4.2 Image Formats 109

Figure 4.3: The halo effect created by anti-aliasing and 1-bit transparency

GIF format allows interlaced images. These are standard GIF images
but are not stored in a sequential-order from top to bottom. The
actual algorithm is

(a) starting with row 0, store every 8th row

(b) starting with row 4, store every 8th row

(c) starting with row 2, store every 4th row

(d) starting with row 1, store every 2nd row

The advantage of interlaced images is that the user can quickly get an
idea of what the image looks like without waiting for the entire image
to download—thus avoiding user frustration.

Animation The GIF format also supports animation. This works
by stacking GIF image after GIF image into the file which are then
displayed in sequence—in the manner of a flip-book. All the image
frames of the animation share the same colour index table—so there is
a maximum of 256 colours for the entire animation. The GIF anima-
tion extension also allows timing and looping information to be added
to the image. Most graphics programs support combining multiple
images into an animation.

Since the GIF animation is basically image after image, the file size
is the combined size of all the images in the animation—which can
produce a surprisingly large file.

PNG

PNG (Portable Network Graphics—pronounced ‘ping’) is a more re-
cent alternative to the GIF format. It was devised as a second gener-
ation better alternative to the GIF format2. PNG can provide a GIF-
like indexed format, a 24-bit true colour format, or a 32-bit RGBA for-
mat (true colour with an 8-bit transparency channel). Compression
is performed without loss of information and provides better rates
of compression than the GIF format. The PNG compression is a
two stage process. First each image line is filtered so that hopefully
the transformed image is more easily compressed. The non-patented

2 Development on an alternative to GIF was started in 1994 when Unisys Corp. enforced
its copyright on the Lempel-Ziv-Welch compression algorithm used in GIF images.

c© USQ, June 12, 2012

110 Chapter 4 Graphics

Table 4.2: Comparing the size of PNG and GIF files using the images of
Figure 4.1

Image GIF PNG

(1) 998 229
(2) 1440 256
(3) 2286 350
(4) 1494 355
(5) 7677 362
(6) 19532 8445
(7) 157725 99768

Table 4.3: The five filtering algorithms used to predict the current byte

Filter Predicted Byte

None Raw byte value passes through unaltered
Sub Byte to the left (A)
Up Byte above (B)
Average Average of bytes A and B (rounded down)
Paeth A, B or C (above-left byte) whichever is closest to A+B-C

lossless compression algorithm “deflate” is then used to compress the
transformed image.

Generally PNG files are smaller than GIF files. Table 4.2 compares
the PNG and GIF file sizes of the images from Figure 4.1.

Pre-Filtering The pre-filtering employed by PNG scans the image
line by line and tries to predict the value of each byte by using pre-
viously scanned neighbouring bytes. The predicted byte value is then
subtracted from the actual byte value. If the prediction is good then
the final filtered byte value should be zero3. An image line filtered in
this way is often more compressible than the raw image line would be,
especially if it is similar to the line above. Filtering is done on byte
values not pixels—as pixels could be represented by 1, 2, 3, 4 or more
bytes. Table 4.3 lists the five filter algorithms used to predicted the
current byte.

Interlaced PNG offers an additional interlacing scheme as well as
the GIF 4-pass scheme. It is a 2-dimensional, 7-pass scheme. The
two dimensional scheme allows a clearer low-resolution view of the
image to be visible earlier in the image download—unfortunately it
also tends to reduce the image’s compressibility.

Animation PNG supports animation through its Multiple-image
Network Graphics (MNG) extension—unfortunately it is not well sup-
ported by browsers—though plugins are available.

3 This filtering method is not surprisingly called ‘Method 0’.

c© USQ, June 12, 2012

4.2 Image Formats 111

JPEG

The Joint Photographic Experts Group (JPEG)4 format, unlike GIF
and PNG is a lossy format. It was designed to compress photographic
images that may contain millions of colours or shades of grey. Since
the JPEG format is lossy, there is a trade-off between image quality
and file size. The underlying format for JPEG is 24-bit colour but
because of the lossy compression the format can store images in files
significantly smaller than the GIF or PNG format.

Compression The JPEG compression algorithm is lossy—but it is
designed so that the human eye will (hopefully) not notice the miss-
ing information. The algorithm reduces spatial colour variation but
not the brightness of the image—the human eye can see significantly
more fine detail in the brightness of an image than the colour of an
image. The modified image is then split into 8 × 8 pixel block—each
channel in the block is converted into a frequency representation using
a discrete cosine transform (that is the data is now represented by a
sum of cosines with different frequencies). The human eye is good at
seeing small differences in brightness over a relatively large area, but
not so good at distinguishing the exact strength of a high frequency
brightness variation. This means the coefficients of cosines with high
frequencies can be reduced hopefully to to zero. This reduces the
amount of information that has to be stored for each block and thus
stored for the entire image.

Reduce the quality of the image—by setting more cosine coefficients
to zero—which also reduces the size of the file.

Transparency JPEG images do not support transparency.

Progressive JPEG images support a feature called progressive JPEG.
Progressive JPEGs behave similarly to interlaced GIF or PNG images.
Progressive JPEGs when displaying progress from low resolution to
their final high resolution, going from a fuzzy, blurred image to the
final clear image.

Animation JPEG images do not support animation.

Note Choosing between PNG, GIF or JPEG is usually straightforward:
if you wish to display a photograph use JPEG, if it is an illustra-
tion use PNG (or GIF).

4.2.2 Vector Formats

An alternative to raster formats are vector or geometric formats. A
vector format describes the image using mathematical curves, shapes,
points and colours. It can be very compact as only the curves and
regular shapes need be described not each pixel. On the other hand,
a rendering algorithm or engine must be used to convert from the

4 The name of the committee that wrote the standard

c© USQ, June 12, 2012

112 Chapter 4 Graphics

Original PNG Image

Quality 85%

Quality 50%

Quality 10%

Figure 4.4: Three JPEG images showing the discrete cosine artifacts grow-
ing as the quality is decreased. Even with the quality at 85%
shadows around the letters are visible.

c© USQ, June 12, 2012

4.2 Image Formats 113

geometric description of the image to the raster image before it can
be displayed—this can take time.

One major advantage of vector images is that they can be scaled easily
preserving their smooth shape—unlike raster images.

Most vector formats (SVG, Postscript, PDF etc.) also support the
inclusion of raster images within the vector image.

Note Vector formats are the preferred format for text since they are
scalable. Each character in a font description file is described
by a set of Bézier curves—which are easily added to a vector
image—and preserve the character shapes at any size.

It should be noted however, that high quality characters are de-
signed specifically for a very narrow size range and should not
be scaled to any size. The reason is that the eye is not a linear
instrument what is visually pleasing and clear at 10 points scaled
to 20 points will look odd—typically the white space around and
within characters is too great.

Adobe Corporation’s professional fonts normally come in four rec-
ommended size ranges (the ranges are different for each design)—

• footnote, superscript, subscript size (∼ 6− 9 points)

• text size (∼ 10− 14 points)

• heading size (∼ 15− 20 points)

• display size (∼> 20 points)

Using a font scaled outside its recommended size range produces
very strange looking text.

Postscript

Unlike other vector image formats Postscript is a “programming”
language—not a mark-up language. PostScript is an interpreted, stack-
based language where the language syntax is “reverse-Polish” nota-
tion. Postscript has been used extensively as an “interpreter” within
Laser Printers (which are raster devices). By placing an interpreter
within the printer has a number of advantages—

• Offload the rasterization of the vector description to the printer’s
CPU.

• Possibility of using a single language that could be available on
any printer—thus precluding the need for individual drivers for
each printer.

• Since Postscript is a complete printing language it can be dis-
played on any device with an interpreter—making it a device
independent language.

Example 4.3: Postscript uses a “Reverse Polish” notation (also
called postfix notation). In Reverse Polish notation the oper-
ators (procedures) follow their operands (parameters)—

c© USQ, June 12, 2012

114 Chapter 4 Graphics

1 0 0 setrgbcolor

Set the current draw colour to Red. The procedure setrgbcolor
requires three numbers to set the RGB colour space. The pro-
cedure pops 3 numbers of the top of the stack and uses those
numbers for the new colour.

Example 4.4: The following is part of a small Postscript file. (The
full version can be found on the course web site.)

Figure 4.5 shows the rendered image of the full file.

%!PS-Adobe-3.0 EPSF-3.0
%%Creator: inkscape 0.46
%%Pages: 1
%%Orientation: Portrait
%%BoundingBox: 130 121 415 313
%%EndComments
%%Page: 1 1
0 480 translate
0.8 -0.8 scale
0 0 0 setrgbcolor
[] 0 setdash
1 setlinewidth
0 setlinejoin
0 setlinecap
gsave [1 0 0 1 0 0] concat
gsave
% Create a rectangle and fill it with Blue
0 0 1 setrgbcolor
newpath
229.06523 211.12801 moveto
477.63666 211.12801 lineto
477.63666 412.55658 lineto
229.06523 412.55658 lineto
229.06523 211.12801 lineto
closepath
eofill
grestore
% Draw a Red Border arround the Blue rectangle
1 0 0 setrgbcolor
[] 0 setdash
3 setlinewidth
0 setlinejoin
0 setlinecap
newpath
229.06523 211.12801 moveto
477.63666 211.12801 lineto
477.63666 412.55658 lineto
229.06523 412.55658 lineto
229.06523 211.12801 lineto
closepath
stroke
gsave [1 0 0 -1 162.59674 324.0643] concat
gsave
% Print Text.
/newlatin1font {findfont dup length dict copy dup

/Encoding ISOLatin1Encoding
put definefont} def

/BitstreamVeraSans-Roman-ISOLatin1
/BitstreamVeraSans-Roman newlatin1font
24 scalefont

c© USQ, June 12, 2012

4.2 Image Formats 115

setfont
0 0 0 setrgbcolor
newpath
0 0 moveto
() show
grestore
grestore
gsave [1 0 0 -1 162.59674 324.0643] concat
gsave
/BitstreamVeraSans-Roman-ISOLatin1 findfont
24 scalefont
setfont
0 0 0 setrgbcolor
newpath
0 0 moveto
(An Example of SVG Graphics) show
grestore
grestore
%% ... lines removed from original file
%% ... full file available on course web site.
showpage
%%EOF

Portable Document Format (PDF)

The PDF is a file-format and markup-language that describes a fixed-
layout document that includes text objects, font objects, image ob-
jects, and vector graphic objects.

To layout the page and render vector graphics PDF uses a subset of
the Postscript language—the flow control aspects of Postscript have
been removed and only the simple graphics commands such as move,
draw and fill are retained.

Example 4.5: The following is part of a small PDF file. (The full
version can be found on the course web site.) Figure 4.5 shows
the rendered image.

This example shows how PDF encodes objects as binary data
streams.

%PDF-1.4
3 0 obj
<< /Length 4 0 R

/Filter /FlateDecode
/Type /XObject
/Subtype /Form
/BBox [0 0 480 480]
/Group <<

/Type /Group
/S /Transparency
/CS /DeviceRGB

>>
/Resources 2 0 R

>>
stream
x^K^Em\305\375T=O$1...
endstream
endobj
...

c© USQ, June 12, 2012

116 Chapter 4 Graphics

Figure 4.5: The rendered image produced by the vector code of Examples
4.4,4.5, or 4.6,

SVG

Scalable Vector Graphics (SVG) is an XML markup-language devel-
oped by the World Wide Web Consortium (W3C) to describe two-
dimensional vector images. Most Web browsers support SVG images
natively. SVG recognises three types of graphics object—vector, raster
and text.

SVG recognises basic shapes such as Lines, Rectangles, Circles, El-
lipses, and Paths. All shapes are defined by a set of (x, y) coordinates.

Example 4.6: The following is a small SVG file. Figure 4.5 shows
the rendered image.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!-- Created with Inkscape (http://www.inkscape.org/) -->
<svg xmlns:svg="http://www.w3.org/2000/svg"

xmlns="http://www.w3.org/2000/svg"
version="1.0"
width="744.09448"
height="1052.3622"
id="svg2">

<defs id="defs4" />
<rect width="248.57143" height="201.42857"

x="229.06523" y="211.12801"
id="rect2385"
style="fill:#0000ff;fill-opacity:1;

fill-rule:evenodd;
stroke:#ff0000;stroke-width:3;
stroke-linecap:butt;stroke-linejoin:miter;
stroke-miterlimit:4;stroke-dasharray:none;
stroke-opacity:1" />

<text x="162.59674" y="324.0643"
id="text3163"

c© USQ, June 12, 2012

4.3 Images as Anchors 117

xml:space="preserve"
style="font-size:24px;font-style:normal;

font-variant:normal;
font-weight:normal;font-stretch:normal;
text-align:start;line-height:125%;
writing-mode:lr-tb;text-anchor:start;
fill:#000000;fill-opacity:1;stroke:none;
stroke-width:1px;stroke-linecap:butt;
stroke-linejoin:miter;stroke-opacity:1;
font-family:Bitstream Vera Sans;">

<tspan x="162.59674" y="324.0643"
id="tspan3167">An Example of SVG Graphics</tspan>

</text>
<path d="M 541.98912,400.8461

A 105.01039,105.01039 0 1 1 331.96834,400.8461
A 105.01039,105.01039 0 1 1 541.98912,400.8461 z"
transform="translate(-24.841167,-58.715487)"
id="path2385"
style="fill:#ffff00;fill-opacity:0.5288889;

fill-rule:evenodd;
stroke:#000000;stroke-width:1px;
stroke-linecap:butt;stroke-linejoin:miter;
stroke-opacity:1" />

</svg>

Exercise 4.7: Explain why converting a PNG image into an SVG
image will not mean that the original image is now infintely scal-
able?

4.3 Images as Anchors

There are a number of ways in which images can be employed as
anchors for hypertext link. The first and simplest is to wrap an image
element in an HTML anchor. For instance, the HTML code below
results in an image being displayed; clicking anywhere in the image
will activate the link.

<img width="88px" height="31px" title="Valid CSS"

src="valid-css2-blue.gif" alt="Valid CSS!"
style="border: 0px" />

Notice that this is simply a combination of the standard anchor <A>

and image tags. This technique can be used, for instance, to
create navigation buttons at the bottom and top of a page. An array
of buttons or individual images could be arranged using the HTML
table element or CSS commands.

Note The style="border: 0px" style command removes the small
border which normally surrounds anchored images when the browser
is configured to underline links.

A more sophisticated and general method of utilising an image as an
anchor involves creating an image map. An image map associates a
set of (image region, URL) pairings with a particular image. The
region (sometimes called a hot spot) defines a part of the image;
clicking on that part activates the associated link. There are two ways
of programming image maps: server-side maps and client-side maps.

c© USQ, June 12, 2012

118 Chapter 4 Graphics

Both schemes are logically equivalent, but are described differently,
and have different resource usage implications.

With a server-side map (historically the first kind of map imple-
mented), the user’s mouse-click is seen by the browser and the co-
ordinates of the mouse pointer are sent to the server. The server looks
up the image map to determine the URL, which it transmits back to
the user’s browser so that the link can be activated. Obviously this
scheme imposes a network communication overhead (two messages
sent between client and server), as well as computational load on the
server, whose job it is to look up the URL given image coordinates.

A neater solution uses client-side maps. Here the page containing the
image also contains an image map specification. So now the client’s
browser has all the information necessary to calculate the URL, thus
eliminating the load on both the network and the remote server.

Client-side maps have largely superseded server-side maps as they are
easier to set up and are more economical of server and network re-
sources. They also have the distinct advantage of providing feedback
to the user via the information bar in their browser and also the pointer
status when the mouse pointer is positioned over a hot spot.

4.3.1 Server-side Image Maps

Here are the steps required to create a server-side image map.

(a) Set up the server to allow server-side image maps.

(b) Select an image. This is fairly straightforward. Make sure that
the image is not too big (we don’t want the user to have to scroll
their window). Also make sure that it displays clearly (i.e. it is
not too small to use).

(c) Create an image map.

(d) Write the HTML markup command to include the image.

Setting up the server

The server must be configured correctly before it will interpret image
maps. Your server is already configured to interpret image maps.
Configuration of the server will be covered in a later section5.

Creating an image map

A separate map file must be created. The file contains a set of entries;
there is one entry (one line) for each active region. The general format
is

5 For those interested now, here is what to do for the Apache server. The idea is that
a handler (a piece of code within the Apache server) must be invoked to deal with the
map file. Add this line to your httpd.conf file

AddHandler imap-file map

This says to use the handler module “imap-file” when a map file is encountered. You
should also be able to add the directive to a directory access file in your document
directory. See the later section on server configuration for more information.

c© USQ, June 12, 2012

4.3 Images as Anchors 119

region-type URL coordinates

Regions can be rectangles, points, circles, irregular polygons, or de-
fault.

The URL can describe any local or non-local item. It can be an-
other HTML document, an image, or anything which can be legally
described by a URL.

The region keywords and coordinates are summarised in table 4.4.
X,Y coordinates are expressed as pixel measurements from the upper
left corner of the image.

Table 4.4: Image map directives

Directive Coordinates Example
rect Two space separated coordinate pairs defining top

left and bottom right corners.
rect URL 20,30 45,100

circle Two space separated coordinate pairs defining centre
and any edge point.

circle URL 20,30 45,100

poly Series of (max 100) space separated coordinate pairs
defining set of vertices of a closed polygon. If first
and last point are not the same, then the map will
assume that they are connected.

poly URL 20,30 45,100 55,50

30,5

point A single coordinate pair. If a mouse click does not
fall within any other region, then the closest point is
selected.

point URL 20,30

default No region is specified. The default URL is returned
when no region is selected and there are no points
present in the map.

default URL

HTML markup

Now the image can be added to a HTML document. As an example,
the following HTML

Where light-index.map is

rect aug3.jpg 9,3 51,85
rect canaveral1.jpg 65,3 111,84
rect griffiths.jpg 120,7 171,86
rect lhse2.jpg 176,5 230,84
rect lhse3.jpg 234,9 287,85
rect lhse5.jpg 293,8 346,85
rect lhse60.jpg 4,96 56,173
rect lhse7.jpg 62,96 112,172
rect otway2.jpg 119,96 171,172
rect pcola1.jpg 175,96 230,173

c© USQ, June 12, 2012

120 Chapter 4 Graphics

rect ponce1.jpg 237,93 284,172
rect ponce3.jpg 294,105 345,170

displays a thumbnail index to a set of images. See the accompanying
web page on the course web site.

Note This scheme is very similar to that of the simple anchored image
described earlier. The only difference is that the ismap directive
says to interpret the hyper-link light-index.map as a map.

Relative URLs

Relative URLs appearing in the map file are normally interpreted rel-
ative to the location of the map file. Thus in the example above, the
images are expected to be in the same directory as the map file.

The Apache server allows you to specify how relative URLs in a map
file are to be interpreted. The optional base_uri directive in the map
file does this.

base_uri map URLs are relative to the map file
base_uri referer URLs are relative to the html file in which the

image reference appears
base_uri specific-URL URLs are relative to the specified (local or non-

local) URL

Menus and further information

Using the Apache server, it is possible to arrange for a menu to ap-
pear if no region is selected in an image. See the description of the
module mod_imap in the Apache documentation. It also contains more
extensive details about map file formats.

4.3.2 Client-side image maps

Client-side image maps are almost identical in concept to server-side
maps. You must create a map, but for Client-side image maps this
map is included in the HTML file which refers to the image, not in a
separate file.

Using the same example image as for server-side mapping results in
the following client-side image map.

<img src="light-index.jpg" alt="index of lighthouses"
usemap="#index" />

<map name="index">
<area shape="rect" coords="9,3,51,85" href="aug3.jpg"/>
<area shape="rect" coords="65,3,111,84" href="canaveral1.jpg" />
<area shape="rect" coords="120,7,171,86" href="griffiths.jpg" />
<area shape="rect" coords="176,5,230,84" href="lhse2.jpg" />
<area shape="rect" coords="234,9,287,85" href="lhse3.jpg" />
<area shape="rect" coords="293,8,346,85" href="lhse5.jpg" />
<area shape="rect" coords="4,96,56,173" href="lhse60.jpg" />
<area shape="rect" coords="62,96,112,172" href="lhse7.jpg" />
<area shape="rect" coords="119,96,171,172" href="otway2.jpg" />
<area shape="rect" coords="175,96,230,173" href="pcola1.jpg" />

c© USQ, June 12, 2012

4.3 Images as Anchors 121

<area shape="rect" coords="237,93,284,172" href="ponce1.jpg" />
<area shape="rect" coords="294,105,345,170" href="ponce3.jpg" />
<area shape="default" nohref>
</map>

Note the use of the new HTML tags map and area to specify a map,
and also the new img attribute usemap which specifies that client-side
mapping is being used. The usemap attribute specifies the URL of the
associated map tag. Usually it is in the same document so that it has
a form like #label, but it can be in any file as long as it is accessible.

Four different shapes are possible. These have the same role as those
of the server-side map, but the syntax is a little different. The main
difference, apart from the fact that the information is encoded as area
attributes, is that lists of coordinates are separated by commas.

Typical examples are

<area shape="rect" coords="20,30,45,100" ... />

<area shape="circle" coords="20,30,15" ... />

Note that the numbers are X,Y,Radius (unlike server side)

<area shape="poly" coords="20,30,45,100,55,50,30,5" ... />

<area shape="default" nohref />

<area shape="default" href=... />

The nohref attribute indicates that no action is to be taken.

The alt attribute can be used with the area tag to give a name to the
region. This can be displayed in a status bar or used by non-graphics
browsers and applications. For example we could (and should!) have
coded the map entries like this:

<area shape="rect" coords="65,3,111,84" alt="Cape Canaveral"

href="canaveral1.jpg" />

4.3.3 Creating map descriptions

You can code image maps by hand, using for instance the display

utility to determine coordinates together with a text editor to actually
type in the commands. If using display, moving the mouse with the
middle button of a three button mouse (right button on two-button
mouse) depressed should show you the coordinates.

There is an easier way. There are many programs available to make
the creation of image maps easier. One extremely powerful program
available under Linux is The Gimp. This is an image manipulation
program as powerful as Adobe Photoshop.

Start The Gimp from the command line using the command gimp.
Load the image into The Gimp, using the menu item file->open.

When the image is loaded into gimp right click on the image. Select
the menu item Filters->Web->ImageMap. The ImageMap script can
produce client side or server side imagemaps, and graphically allows
you to specify the hot regions of the image.

c© USQ, June 12, 2012

122 Chapter 4 Graphics

4.4 Questions

Short Answer Questions

Q. 4.8: What is an image map ?

Q. 4.9: What is a pixel?

Q. 4.10: Define the term raster . In what contexts is it used?

Q. 4.11: What is the main disadvantage of the raster format?

Q. 4.12: What is the difference between vector and raster formats?

Q. 4.13: What does rendering mean? When is it used?

Q. 4.14: Which format vector or raster is most closely linked to the
screen display hardware?

Q. 4.15: Why are Monochrome images more compact than Colour
or Greyscale images?

Q. 4.16: Explain the LUT (Look Up Table) of 8 bit colour formats.

Q. 4.17: Explain the conundrum of how the GIF format can define
24 bit colour but can only display 8 bit.

Q. 4.18: What is lossy compression?

Q. 4.19: Why is compression necessary in image formats?

Q. 4.20: What is the most significant difference between the GIF or
PNG and JPEG formats?

Q. 4.21: What is “pre-filtering” used for in the PNG format?

Q. 4.22: Suggest how a GIF image would be increased in size by a
factor of 2 in each linear dimension?

Q. 4.23: Why is converting a PNG image to an SVG image a waste
of time?

Q. 4.24: Why are Client-side image maps prefered over Server-side
image maps?

4.5 Further Reading and References

• www.w3.org/standards/webdesign/graphics — the W3C site
on graphics standards.

• www.w3.org/Graphics/ — the W3C site “Graphics on the Web”.

• www.jpeg.org/ — the Joint Photographic Experts Group Home
Page.

• www.libpng.org/pub/png/ — the PNG Home page

• www.w3.org/Graphics/SVG/ — the W3C SVG site

c© 2010 Leigh Brookshaw and Richard Watson
Department of Mathematics and Computing, USQ.

(This file created: June 12, 2012)

c© USQ, June 12, 2012

http://www.w3.org/standards/webdesign/graphics
http://www.w3.org/Graphics/
http://www.jpeg.org/
http://www.libpng.org/pub/png/
http://www.w3.org/Graphics/SVG/

Chapter 5 Web Design

Web sites are often developed from one particular point of view—it
may be content centred, or technology centred, or graphically centred.
Web sites are rarely developed from the most important view of all—
the user’s! Keeping a site’s users in mind and always trying to meet
their needs should be the primary goal for anyone building a Web site.

Sites should be built for common user capabilities. They should be ac-
cessible to all and be able to account for the differences of individuals.
This at first glance appears to be contradictory or impossible—it is
not, but it is not easy. A site built for users requires thought, iterative
design, testing and user feedback. It also requires the designer to be
aware of W3C Web standards and guides and most importantly of all
the ability to be flexible with cherished design ideas.

Chapter contents
5.1 What is Web design? 123
5.2 User-Centred Design 124

5.2.1 Usability 124
5.2.2 Common User Characteristics 126
5.2.3 Web Conventions 134

5.3 Accessibility 134
5.4 Usability Guidelines 137

5.4.1 Ten Good Design Ideas 137
5.4.2 Ten Bad Design Ideas 138

5.5 Questions 140
5.6 Further Reading and References 141

5.1 What is Web design?

There are approximately five facets of Web design that need to be
considered when building a new site:

Purpose The reason the site exists! This is arguably the most important
consideration when designing a Web site. The purpose of the site
should be considered in all decisions when creating it.

Content The information on the site, the way text is written, how it is
organised, presented, and structured within a page and across
pages.

Visual The page layout used in the site. The graphical elements used
either as information, decoration or for navigation.

Technology The use of XHTML, CSS, XML technologies, Javascript, PHP,
AJAX, databases etc.

124 Chapter 5 Web Design

Delivery The speed and reliability of delivering a site’s content over the
Internet.

The amount each of the five elements influence a site’s design will vary
according to the type of site being built. A personal home page has
very different content than a shopping site. An internal web site for
a company will have different visual imperatives than the company’s
public web site. Precisely what is meant by “Web Design” is very fluid
but basic “good” design practices are similar across the entire Web.

5.2 User-Centred Design

A common mistake made in Web development is that, far too often,
sites are built more for developers and their needs rather than for a
site’s actual users. When designing a site the designer must always
remember they are not the user! The site developer has an intimate
knowledge of the site they have built. They understand where infor-
mation is. They understand what specialist software the Web browser
may require. They have designed it for their hardware characteristics.
If a site is built around the developer’s skill levels and hardware most
users of the site will be very confused. Web site developers must recog-
nise that most users of their sites will not have an intimate knowledge
of the site nor have the same expectations for the site as the develop-
ers do. The key to successful, usable Web site design is always trying
to think from the point of view of a “typical” user. Design that puts
the user first is called User-centred design.

Understanding the users’ needs is not easy. Sites should be built for
common user capabilities, rather than for the extreme novice or knowl-
edgeable user. Sites should be accessible to all and be able to account
for the differences exhibited by individuals or their hardware. While
a site should always be built for users, the desires of the site’s owners
and creators must also be met. The fine balance of power between the
users, the creators and the owners is not always easily achieved.

5.2.1 Usability

What exactly does it mean for something to be “usable”? Consider
the following definition from ISO 9241 Ergonomics of Human System
Interaction,

“[Usability is] the extent to which a product [or Web site]
can be used by specified users to achieve specified goals with
effectiveness, efficiency and satisfaction in a specified con-
text of use.”

Consider this definition in detail—

• Firstly, when talking about usability the user group has to be
well defined. Usability will vary greatly depending on the user.

• Secondly, usability should be related to a task. Sites should not
be considered usable in some general sense—but within the con-
text of a specific task.

c© USQ, June 12, 2012

5.2 User-Centred Design 125

• Usability is then judged by the effectiveness, efficiency, and sat-
isfaction the user experiences trying to achieve a specific task—

Effectiveness: whether or not users are able to achieve their
goals. If users are unable to, or only partially able to complete
the task they set out to perform at a site—then the site is not
usable!

Efficiency: if users make a great many mistakes or have to
perform tasks in a convoluted way when they visit a site—then
the site is not usable!

Satisfaction: The user must be satisfied with the performance
and outcomes of the task.

Exercise 5.1: Using the definition of “Usability” above how “us-
able” are the following sites?

Starting with the task to perform—identify the “User Group”
and then rate the Effectiveness, Efficiency and Satisfaction of
the site when performing that task.

• Site: http://www.usq.edu.au/
Task: Enrolling as a new student.

• Site: http://www.usq.edu.au/
Task: Printing an assignment cover sheet.

• Site: http://www.birch.com.au/
Task: Booking a movie ticket online.

Many other definitions of usability exist—Jacob Nielsen (See Section
5.6 below), suggests that the following five ideas determine the usabil-
ity of a site:

• Learnability

• Rememberability

• Efficiency of use

• Reliability in use

• User satisfaction

By this definition, a site is usable if it is easy to learn, easy to remem-
ber how to use, reliable in that it works correctly and helps users to
perform tasks correctly, and results in the user being generally satisfied
using the site.

For Web design both definitions do not appear useful—because people
are different and have different levels of capabilities and Web knowl-
edge, not everyone is going to agree on what is useful. A site that is
easy for one user may be difficult to understand for another!

There is no absolute description of what constitutes a usable site—the
best that can be hoped for are guidelines.

c© USQ, June 12, 2012

http://www.usq.edu.au/
http://www.usq.edu.au/
http://www.birch.com.au/

126 Chapter 5 Web Design

5.2.2 Common User Characteristics

There are no generic people, but people do tend to have similar physi-
cal characteristics. Most people tend to see about the same, are capa-
ble of remembering things, and react to stimuli in about the same way.
But remember people are individuals and what is considered ‘similar’
covers a very broad spectrum. However, as with all aspects of Web
design, you should aim first for the common user and make sure to
account for differences.

Vision

The primary way most users access Web data is visually. They look
at a screen and process data in the form of text, colour, graphics or
video. The user’s ability to see is obviously important. Unfortunately,
many sites assume that users have super-human vision, because they
use very small text, or have little contrast between foreground and
background elements, or have text overlaying background images.

Site designers should always keep in mind that they have no way to
know the visual acuity of visitors to their site. Text should never be
specified in absolute units of pixels or printer’s points. When using
pixels the designer does not know the physical size of the pixels on the
user’s monitor and cannot know the final size of the text. When using
points the designer does not know how good the users eye sight is. If
fonts sizes must be changed (outside the normal changes required for
headings) use relative size changes—relative to the user’s choice of the
base font size.

Example 5.2: Study the “Text Size Example” that can be found in
the examples directory of the course web site. This example com-
pares font sizes using pixels, points and logical size definitions.

In order to avoid troublesome colour combinations, site designers should
be aware of colour perception. Three factors affect how colour is per-
ceived:

• Hue the degree to which a colour is related to the basic colours—
red, green and blue.

• Saturation the degree to which a colour differs from achro-
matic (white, grey, or black).

• Lightness the degree to which a colour appears lighter or darker
than another under the same viewing conditions.

Example 5.3: The Web Content Accessibility Guidelines (WCAG 2.0)
of the W3C suggests that the visual presentation of text have a
contrast ratio between the foreground and background colours of
at least 4.5:1.

The contrast ratio is defined as—

L1 + 0.05

L2 + 0.05

where

c© USQ, June 12, 2012

5.2 User-Centred Design 127

Figure 5.1: Text with different contrast ratios relative to the background
colour.

c© USQ, June 12, 2012

128 Chapter 5 Web Design

Figure 5.2: Comparison of foreground and background colours of similar
hue, saturation and lightness. (note the lightness formula used
was L = (min(R,G,B) + max(R,G,B))/2)

c© USQ, June 12, 2012

5.2 User-Centred Design 129

• L1 is the relative luminance of the lighter of the colours, and

• L2 is the relative luminance of the darker of the colours.

Contrast ratios can range from 1 to 21

The relative luminance is the relative brightness of any point
in a colour space, normalised to 0 for darkest black and 1 for
lightest white. For the sRGB colour space the relative luminance
is defined as

L = 0.2126R+ 0.7152G + 0.0722B

where

if R <= 0.03928 then R =
R

12.92
else R =

(
R + 0.055

1.055

)2.4

if G <= 0.03928 then G =
G

12.92
else G =

(
G + 0.055

1.055

)2.4

if B <= 0.03928 then B =
B

12.92
else B =

(
B + 0.055

1.055

)2.4

In the sRGB colour space—R, G, B range from 0.0 to 1.0.

Figure 5.1 shows the contrast ratio between the foreground and
background colours. A Contrast ratio less than about 5 means
text is becoming difficult to read.

Exercise 5.4: Print Figure 5.1 on a colour ink-jet printer, on a
colour laser printer, on a monochrome laser-printer, on different
medium—What are the differences in readability?

How do the printed versions compare with the screen version?

Web page designers an avoid vision issues for users if they follow a few
simple rules—

Avoid using foreground and background colours of similar
hue Users with vision that is somewhat colour deficient are often un-
able to differentiate between colours of similar hue when those colours
are also of similar lightness and saturation. See Figure 5.2.

There are also other colours and colour combinations to avoid. As-
suming equal saturation and lightness colours to be aware of are (see
Figure 5.3)

• blue foregrounds—the eye cannot focus on blue very well. The
human eye has far less sensitivity to blue than any other colour.

• since the eye is less sensitive to blue—blue backgrounds with a
contrasting foreground (yellow for instance) can be very easily
read and not a strain on the eyes.

• the eye cannot focus on shades of red and blue simultaneously so
red/blue combinations of foreground/background colours should
be avoided.

c© USQ, June 12, 2012

130 Chapter 5 Web Design

Figure 5.3: Comparison of Red, Green and Blue foreground and background
combinations.

Avoid using foreground and background colours of similar
saturation Colours with low saturation—that is, colours close to
achromatic grey— can be used as backgrounds, and can reduce eye-
strain by reducing the glare from screens—but must have a foreground
that does not have a similar hue, saturation or lightness.

Avoid using foreground and background colours of similar
lightness—keep contrast high Dark text on dark backgrounds or
light text on light backgrounds may not be readable on all monitors or
by all people who visit the site. Yellow and black are examples of con-
trasting colours—this is why they are used on traffic signs throughout
the world.

Avoid using busy background tiles Tiled background images
with patterns of multiple hues, saturations or lightness levels will make
text extremely difficult to read. Never use speckled or textured back-
grounds.

Make important items’ colours distinguishable in two ways.
To make pages readable to all users foreground and background colours
should be significantly different in two variables (hue and lightness, for
example).

Exercise 5.5: Print Figure 5.2 on a colour ink-jet printer, on a
colour laser printer, on a monochrome laser-printer, on different
medium—What are the differences in readability?

c© USQ, June 12, 2012

5.2 User-Centred Design 131

How do the printed versions compare with the screen version?

Memory

Memory is critical to user being able to utilise a site. If users are unable
to remember anything about the structure of a site as they browse it,
they will become hopelessly lost—and are unlikely to return. Users
tend to employ a simple maxim: Minimise effort and Maximise gain!
A user will not spend a great deal of time understanding a site unless
the outcome warrants the expenditure of effort—users are “lazy”!

A few simple ideas can be employed to ensure a visitor to a site is not
presented with too complex a site that means they will avoid it—

Recognition is easier than recall There are plenty of examples
how recognition is easier than recall. Most people consider multiple-
choice tests easier than fill-in tests—the difference between recognising
the correct answer and recalling the correct answer. If links are not
to be coloured on a site then links will never look as though they
have been visited forcing users to recall where they have been. If links
change colour after they have been visited, then a user only has to
recognise the different colour for a visited link.

Only three actions can be memorised sequentially Web users
appear to be able to remember about the last three sequential pages
as they browse (consider how many instructions you can remember
when asking for directions!). As a user jumps through a myriad of
pages some of the pages will be memorable—mainly because they are
different—for instance site home pages. However, if you wish users
to remember a path through your site then they tend to remember
only three pages sequentially. Therefore you cannot expect users to
remember a sequence or path longer than three items without repeated
use—this implies that all content should be approximately three clicks
away from the home page!

Response Times

Web users generally, are more patient with a site if they are unfamiliar
with it. Sites that could be considered single visit-sites, such as pro-
motional sites for products (movie sites, computer equipment sites,
designer portfolio sites etc.), can afford huge download times. The
user will wait for the animation or multiple images because they want
information on the products being displayed. On subsequent visits
though, patience for the glitz wears thin. The needs and desires of the
first-time visitor, are different than the frequent visitor to a site.

The amount of time a user will wait will vary based on the individual
user, and the potential benefit gained from waiting. However, there
are some things that can be said about the elapsed time a user is
willing to wait—

0.1 Seconds An event on this times scale appears almost instanta-
neous to the user.

c© USQ, June 12, 2012

132 Chapter 5 Web Design

1.0 Seconds The user is relatively engaged with the event and not
easily distracted from what is happening on the screen

10 Seconds This is the suggested limit for keeping the user’s atten-
tion focused on the page. Even with a “progress bar” many users will
become bored and move on to something else.

>10 Seconds The user will either leave the site or open up new tabs
in the browser and visit other sites while waiting for the download to
complete.

Stimulus

Users are constantly being bombarded by stimuli from sites. The
text, the links, the graphics, the animations, the sound, . . . all create
a cacophony of stimuli that the user tries to distill useful meaning
from—useful meaning to the user, that is! The three primary ways
people filter data is via setting thresholds, concentrating on a part of
the whole, and sensory adaption.

Thresholds Instead of dealing with minute differences between ob-
jects users tend to notice differences only when they exceed a particular
threshold. Thresholds suggest making objects or pages noticeably dif-
ferent from each other so that users will be easily able to understand
their difference. Designers should not force their users to spend time
and effort trying to interpret differences between objects on a page,
since it is frustrating and takes time and concentration away from the
main goal of getting the user to read the page or perform a task. For
example, consider if link and text colour on a page are too similar—the
user will spend time carefully inspecting text for underlines instead of
reading the content.

Concentrating on a Subset Users invariably focus on only a part
of a page at any given moment. Concentrating on the information in
that section with the rest of the page filtered out. A good site has lots
of choices but provides the visitor with the ability to focus on what
they are looking for. One way to do this is by grouping similar items
together and separating groups of items with neutral space. Break text
up with subheadings, lists, short paragraphs, highlighted keywords etc.
A site design should strive to limit competing objects on a page.

Sensory Adaption Sensory adaption occurs when users become so
used to a particular stimulus that they no longer respond to it—at
least not consciously. Sensory adaption suggests that numerous fonts,
banners, animations, and coloured regions on a page may go unno-
ticed over time. A user’s full attention can be “grabbed” by present-
ing them with something unexpected (such as a pop-up window)—
unfortunately disturbing a user’s focus on the task at hand can make
them feel uncomfortable because of the lack of consistency, and annoy
them enough so they leave.

c© USQ, June 12, 2012

5.2 User-Centred Design 133

Movement

Web sites are generally manipulated using the keyboard or the mouse—
therefore a good web site design should attempt to minimise the user’s
need to use these devices. Few sites consider that users may prefer
using the TAB key, instead of the mouse, to move through choices on
a page. Though data entry pages (forms pages) may be optimised for
quick navigation via the keyboard, non-form pages rarely are.

Consideration of the work users perform moving their mouse around
the screen also needs to be taken into account. Moving the pointer
around the screen takes effort and time, a button or link press may
take up to a few seconds if a user has to move the pointer a long
distance or focus on clicking a very small button. A few simple rules
can be applied to improve the users speed of use:

Minimise mouse travel distance between successive choices
The page design should be such that when a user selects a link from a
navigation list say, the new page will appear with the navigation list
under the pointer. The user will then not have to move the mouse far
for another selection. This requires consistency of design from page
to page and also assumes that the user will be navigating through the
site exclusively using the provided navigation tools. This is not the
case.

Place navigation tools near the Back/Forward buttons User’s
will also navigate through a site using the Web browser’s Back/Forward
buttons. Minimising mouse travel to the Back/Forward buttons means
placing the primary navigation tools near the browser buttons. For
most browsers this means near the upper left of the page—this of
course also places the primary navigation tools away from the scroll
bars—another section of the browser window heavily used! But us-
ability also suggests that pages should not be so long that scrolling is
necessary!

Exercise 5.6: What are your Web browser’s keyboard commands?
How do you navigate through a site using the keyboard alone?

The TAB key is used to jump from one data entry field or hy-
pertext link to another—how many sites can you find that have
clearly been designed so the TAB key is effective?

Make clickable regions large enough to be easily selected
Clickable regions should be large enough for users to move to them
quickly and select them accurately. The further the region is away
from the main focus of the page the larger it will have to be. This
means—

• enough text should be part of an anchor to make it unambigu-
ously a link,

• images should be large enough to be noticeable and easily click-
able, and

c© USQ, June 12, 2012

134 Chapter 5 Web Design

• all clickable regions (text and images) should be spaced from each
other so that adjacent choices are not accidentally selected!

5.2.3 Web Conventions

Most users will expect Web sites to follow a standard design—the
common interface conventions established by the Web’s most heavily
used sites. Users will spend more of their time on other sites than
yours—that is where users form their expectations of how the Web
works! A site design should keep users expectations in mind.

Some common web conventions are:

• Banner across the top with left corner logo. Users expect
the site banner to appear across the top of the page with a site
logo in the upper-left corner. This should be repeated on every
page.

• Sectional navigation on left or under banner. The main
navigational components of a site are expected to be either verti-
cally down the left side of the page or horizontally across the top
of the page under the banner. The chosen sectional navigational
form is expected to be repeated on all pages.

• Logo is a link to site home page. The site logo is expected
to be an anchor that will return the user to the site’s home page.

• Text links are repeated at the bottom of the page. Sites
tend to repeat textual navigation at the bottom of the page,
particularly if the top or side sectional navigation is graphical.

• Back-to-top link at the bottom of long pages A back-to-top
anchor is generally included at the bottom of the page to quickly
jump the user to the top. This is particularly noticeable on long
pages that may not be expected to fit on a single screen.

• Special print style for heavily printed pages Heavily printed
pages are provided with printer-friendly versions of the site style
file.

• Shopping cart in the upper right Typically, the shopping
cart links are found in the upper-right corner of the page.

• Anchors are blue and underlined Most text hyper-links are
blue and underlined. A different colour for links will just confuse
most users.

• Search and site map in addition to sectional navigation
Large sites will provide a key-words search facility—normally sig-
nified with the word “Search”. Most sites will also have variations
on a site-map page that will have links to the site sections in more
detail than the main sectional navigation tools.

5.3 Accessibility

Providing accessibility for people who may have deficiencies involving
sight, hearing, or other physical capabilities is not just a nice idea—it

c© USQ, June 12, 2012

5.3 Accessibility 135

is actually required in some countries and for some organisations (such
as government agencies)—many companies could be sued if they do
not account for all users (see Maguire v. SOCOG 2000, in the list of
readings below).

Making a Web site accessible is something that should be done, not
just because of a local law or to avoid litigation, but because doing
so will result in a much better Web site for all users. Creating sys-
tems that are accessible to all users also creates benefits for all users,
regardless of capability. Consider “audio books”, initially considered
for the blind—now used by everyone, “curb cutouts” originally made
for wheelchairs, make crossing a street easier for all.

The Web Accessibility Initiative (WAI) of the World Wide Consortium
(W3C) is not only concerned with creating sites that are accessible to
people with disabilities, but also making sites that are accessible by
anyone who might be operating in a different environment than is
considered “the norm” by the site designer. A site designer should
always consider that users may have different operating constraints.
From the WAI consider the following list of potential user constraints:

• users may not be able to see, hear, or move easily, or not be able
to process some types of information easily, or at all.

• users may have difficulty reading or comprehending text because
of language problems.

• users may not be able to use a keyboard or mouse because of
access method (a mobile phone for example) or physical disability.

• users may be operating in a less than ideal environment, such
as a text-only screen, a small screen, a monochrome screen, or a
slow Internet connection.

• users may be accessing the site in a non-standard environment
where they may be affected by environmental factors—accessing
the Web in an airport, factory floor, from a car, or out of doors
in direct sunlight .

• users may have an older browser or a non-standard browser or
operating system or use an alternative form of user interface, such
as voice access.

To deal with these issues the W3C has issued suggestions to improve
the accessibility of a site. These suggestions help make a site acces-
sible for everyone—whether they have a disability or not. The W3C
suggestions are:

Ensure that documents are clear and simple An obvious but
important suggestion—simplicity will lead to greater accessibility. Not
everyone will be able to read a language well, usability is directly
related to simplicity and consistency.

Provide context information Pages should be designed so that
the purpose of every element on a page is clear. For example, the
meaning of links should be clear through the use of tool-tips (the

c© USQ, June 12, 2012

136 Chapter 5 Web Design

title attribute), forms should be designed so that what is required is
clear.

Provide clear navigation mechanisms A site should provide ba-
sic navigation that is easy to understand and at a consistent location
on the page. Navigation aids such as search engines, site maps, and
site indexes should also be provided.

Use W3C technologies and guidelines The site designer should
always try and follow W3C specifications and guidelines. Be aware
though, of the specifications and versions that are supported by the
major browsers.

Design for device independence Web sites should be designed so
that they can work on different devices, including those with different
screen sizes, different viewing devices (mobile phones to wide screens),
and different manipulation devices (touch screen, keyboard and/or
mouse)

Use markup and style sheets, and do so properly Web pages
should use W3C defined (X)HTML for structure and CSS for pre-
sentation. Proprietary markup or presentation elements should be
avoided, as well as technologies that may not be rendered consistently
on different browsers.

Clarify natural language usage The predefined logical markup
elements in (X)HTML should be used to indicate acronyms, defini-
tions, quotations, etc. Also the document’s language should be clearly
indicated within a document to allow a browser to switch (if it is able)
to another language.

Create tables that transform gracefully Tables should never be
used for page layout—they are designed for presenting tabular data.
When a table is used it should be provided with a clear summary of
the contents, a clear caption, column and/or row headings, and other
indicators of the meaning of cell contents.

Don’t rely on colour alone Not every user will be able to view
colours properly. In general, colour combinations with similar hue or
contrast should be avoided—particularly if they are likely to be viewed
on monochrome displays or by people with colour vision deficits. If
colour alone is used to convey information, such as what constitutes a
link, people who cannot differentiate between certain colours and users
with non-visual or monochrome displays will not be able to discern
what is being presented.

Provide equivalent alternatives to auditory and visual con-
tent Web sites should not rely only on one form of communication.

c© USQ, June 12, 2012

5.4 Usability Guidelines 137

If audio is used, a text transcript of the message should also be sup-
plied. If image buttons are used as links, text links should also be
provided.

Ensure pages the feature new technologies transform grace-
fully Any new technologies used on a page must degrade gracefully
under older browsers, older plug-ins or with the feature turned off in
the browser. For example, if a page relies on Javascript will the page
work with it turned off? Or at least will the page fail gracefully?

Ensure user control of time-sensitive content changes Any
moving, blinking, scrolling or auto-updating objects or pages (if they
must be used) must be able to be paused or stopped by the user. Auto-
updating objects on a page are highly annoying, but more importantly
they will make it difficult for a user to focus on the site.

5.4 Usability Guidelines

The following lists have been gleaned from http://www.useit.com/,
a site that at least attempts to collect quantitative data for most of its
suggestions. You will note that a number of ideas are repeated—this
would tend to suggest they are fundamental to the Web and are often
ignored!

5.4.1 Ten Good Design Ideas

This is a list of ideas that if adopted in a site design will increase the
usability of the site—

(a) Name and Logo on every page: Place the site name and
logo on every page. the logo should be a link to the site home
page—but not on the home page itself. Never have a link that
points directly back to the current page.

(b) Provide a Search facility If the site is large, more than 50–
100 pages. The search facility should be clearly labelled with the
word “Search”.

(c) Simple headlines and page titles Write straightforward and
simple headlines and pages titles that clearly explain what the
page is about and will make sense when read out-of-context in a
search engine’s result listing.

(d) Facilitate page scanning Users do not read in detail Web pages
they scan for the information they want. Structure the page to
facilitate scanning and help users ignore large parts of the page
in a single glance. For example, use grouping and subheadings
to break long list into several smaller units.

(e) Structure the content space Do not cram everything about
a topic into a single page—use hyper-text to structure the con-
tent into a starting page that provides an overview and several
secondary pages that each focus on a specific topic. The goal is

c© USQ, June 12, 2012

http://www.useit.com/

138 Chapter 5 Web Design

to allow users to avoid wasting time on those subtopics they are
not interested in.

(f) Use link titles Use the title element to provide users with
a preview of where each link will take them, before they have
clicked on it.

(g) Do the same as everyone else Design your site to follow the
design lead of heavily visited Web sites—users expect all sites to
work similarly.

(h) Accessibility Ensure that all important pages are accessible for
uses with disabilities, especially blind users.

(i) Avoid cluttered image pages Avoid cluttered or bloated im-
age pages with lots of photos—for example, product photo pages.
Instead have small images on individual topic or product pages
and link the image to one or more larger images with as much
detail as the user needs. This will vary depending on the pur-
pose of the pages. Images that might require advanced features
such as being zoomable or rotatable should be reserved for the
secondary pages.

(j) Use relevant image reduction When creating a thumbnail
version of an image do not simply resize the original image so
that it is indecipherable—zoom in on the relevant detail and use
a combination of cropping and resizing.

5.4.2 Ten Bad Design Ideas

This is a flexible list that changes all the time as site designers are
continually coming up with bad Web design habits—

(a) Bad Search Engine Search is a user’s lifeline when naviga-
tion fails. Overly literal search engines reduce usability in that
they are unable to handle typographic errors, plurals, etc. Even
though advanced search can sometimes help, simple search works
best, and search should be presented as a simple text input box
with the word “Search” beside it, since that is what users are
looking for.

(b) Not changing the colour of visited links A good under-
standing of past navigation helps users understand their current
location. Knowing their past and present locations will help users
decide where to go next. More importantly, knowing which pages
they have already visited frees users from unintentionally revisit-
ing the same pages over and over again. These benefits are only
available under one important assumption: that users can tell the
difference between visited and unvisited links because they are in
different colours! When visited links don’t change colour, users
exhibit increased navigational disorientation in usability testing
and unintentionally revisit the same pages repeatedly.

(c) Non-scannable text A wall of text is deadly for an interactive
experience—interactive users want to scan pages for the informa-
tion they are seeking—not read them word for word.

c© USQ, June 12, 2012

5.4 Usability Guidelines 139

Web pages should be written and formatted for online content not
for print content. To support scannability, use well-documented
formating techniques—

• sub-headings

• bulleted lists

• highlighted keywords

• short paragraphs

• Structure the content in the “inverted pyramid” style. Also
called the “summary news lead” style. In this style the
most substantial, interesting, and important information the
writer means to convey is at the start of the text, other ma-
terial follows in order of diminishing importance.

A good style for Web page scanning as readers can leave the
text at any point and understand it, even if they don’t have
all the details.

• a simple writing style—avoid hyperbole.

(d) Fixed font size CSS style sheets give Web site designers the
power to fix font sizes. About 95% of the time, this fixed size is
tiny, reducing readability significantly for most people over the
age of 40.

Respect the user’s preferences and let them resize text as needed.
Also, always specify font sizes in relative terms—not as an abso-
lute number of points or pixels.

(e) Violating design conventions Consistency is one of the most
powerful usability principles: when things always behave the
same, users don’t have to worry about what will happen.

The more users’ expectations are proven right, the more they will
feel in control of the system and the more they will like it. And
the more the system breaks users’ expectations, the more they
will feel insecure.

(f) Looking like an advertisement Selective attention is power-
ful, and Web users have learnt to stop paying attention to any
advertisements that get in the way of their goal-driven naviga-
tion. Therefore, it is best to avoid any designs that may resemble
advertisements. An ever changing field, but currently avoid—

• Banners Users never give their attention to anything that
looks like a banner advertisement.

• Animation Users ignore areas with blinking or flashing text
or other aggressive animation.

• Pop-up Windows Users close small pop-up windows before
they have even fully rendered.

(g) Opening new browser windows Opening new browser win-
dow has a number of negative consequences—

c© USQ, June 12, 2012

140 Chapter 5 Web Design

• Users can view it as a hostile act—since the site is taking
over the user’s machine.

• It disables the “Back” button which is the normal way users
return to previous sites.

• If they are using a small monitor where the windows are
maximised to fill up the screen—they may not even notice
the that a new window has opened.

• Users hate unwarranted pop-up windows. When they want
the destination to appear in a new page, they can use their
browser to do it – assuming, of course, that the link is not
a piece of code that interferes with the browser’s standard
behaviour.

(h) Not answering user’s questions Users are highly goal-driven
on the Web. They visit sites because there is something they
want to accomplish. The ultimate failure of a Web site is to fail
to provide the information users are looking for!

Sometimes the answer is simply not there and they leave the
site. Other times the specifics are buried under a thick layer of
hyperbole. Since users don’t have time to read everything, such
hidden information might almost as well not be there.

(i) Page titles with low search engine visibility Search is the
most important way users discover websites. The page title, con-
tained within the XHTML <title> tag is almost always used as
the clickable headline for listings on search engine result pages.
Search engines typically show the first 60 characters of the page
title—so they need to be concise! The page title is the main tool
for attracting new visitors from search listings.

Page titles are also used as the default entry when users book-
mark a site.

(j) Non-HTML documents for online reading Users hate com-
ing across a non-HTML file while browsing, because it breaks
their flow. PDF or Microsoft Office Documents are great for
printing and for distributing manuals and other big documents
that need to be printed. Reserve it for this purpose and convert
any information that needs to be browsed or read on the screen
into XHTML pages.

5.5 Questions

Short Answer Questions

Q. 5.7: What do we mean when we suggest that good design is “user-
centred”?

Q. 5.8: “Usability” is a term used a lot in this chapter—what does
it mean in the context of Web design?

c© USQ, June 12, 2012

5.6 Further Reading and References 141

Q. 5.9: If users do not read Web pages in detail but only scan web
pages looking for the information they want—how would you
design a page to facilitate scanning?

Q. 5.10: Why is it a good idea for All users to follow “Accessibility”
guidelines?

Q. 5.11: Why is it a good idea to use the title attribute with the
anchor element?

Q. 5.12: Why isn’t it a good idea to use red and blue hues as fore-
ground and background colours?

Q. 5.13: Explain why that every page on a site should be at most 3
“clicks” from the home page?

Q. 5.14: Explain why it is a good idea when designing a web site to
follow the W3C standards and guides?

Q. 5.15: Why is it not a good idea to use pop up windows on a site?

Q. 5.16: Why should the title of a page—the text found in the title
container—be simple, short and concise?

Q. 5.17: What is the “inverted pyramid” style of structuring text?
Why is it a good idea to use it when writing for the web?

Q. 5.18: Why should you never use a fixed font size?

5.6 Further Reading and References

• www.usabilitynet.org — A European Union site to promote
usability and user-centred design.

• Design guidelines for the Web can be found at http://www.

usabilitynet.org/tools/webdesign.htm.

• Accessibility guidelines for the web can be found at http://www.
usabilitynet.org/tools/accessibility.htm.

• http://www.useit.com/ — Jakob Nielson’s Web site, a leading
expert on Web usability.

• www.useit.com/homepageusability/guidelines.html — 113 guide-
lines for ensuring homepage usability.

• http://www.w3.org/WAI/WCAG20/quickref/ — W3C Accessi-
bility quick reference.

• Maguire v. SOCOG 2000 available on Wikipedia.

c© 2010 Leigh Brookshaw
Department of Mathematics and Computing, USQ.

(This file created: June 12, 2012)

c© USQ, June 12, 2012

http://www.usabilitynet.org
http://www.usabilitynet.org/tools/webdesign.htm
http://www.usabilitynet.org/tools/webdesign.htm
http://www.usabilitynet.org/tools/webdesign.htm
http://www.usabilitynet.org/tools/accessibility.htm
http://www.usabilitynet.org/tools/accessibility.htm
http://www.usabilitynet.org/tools/accessibility.htm
http://www.useit.com/
http://www.useit.com/homepageusability/guidelines.html
http://www.w3.org/WAI/WCAG20/quickref/
http://en.wikipedia.org/wiki/Maguire_v_SOCOG_2000

142 Chapter 5 Web Design

c© USQ, June 12, 2012

Chapter 6 PHP: Hypertext Preprocessor

PHP1 was created by Rasmus Lerdorf in June 1995, to make various
common web programming tasks easier and less repetitive. The goal
of that release was to minimise the amount of code required to achieve
results, this led to a design decision that PHP code would be embedded
inside HTML pages.

Embedded PHP commands within a HTML document means that the
HTML document goes from being a static document that is read by
the server from the document tree to a dynamic document that is
parsed2 and executed by the PHP interpreter before being sent to the
web client.

Chapter contents
6.1 Syntax . 144

6.1.1 Comments 145
6.2 Variables . 145

6.2.1 Types . 145
6.2.2 True or False 148
6.2.3 Strings . 148
6.2.4 Arrays . 151

6.3 Operators 152
6.3.1 Arithmetic Operators 152
6.3.2 Assignment Operator 153
6.3.3 Comparison Operators 153
6.3.4 Ternary Operator 154
6.3.5 Increment/Decrement Operators 154
6.3.6 Logical Operators 154
6.3.7 Array Operators 155
6.3.8 Operator Precedence 156

6.4 Conditional Statements 156
6.4.1 if. . . elsif. . . else 156
6.4.2 Switch . 158

6.5 Looping . 158
6.5.1 while . 158
6.5.2 do. . . while 159
6.5.3 for . 159
6.5.4 foreach 160

6.6 Functions 160
6.6.1 Function Arguments 161
6.6.2 Variable Scope 161

6.7 File Handling 162
6.7.1 C-style file handling 162
6.7.2 High-level file handling 163

1 The acronym PHP stands for “PHP: Hypertext Preprocessor” which is known as a
recursive acronym

2 Parsing is the process analysing a sequence of tokens (or words) to determine their
grammatical structure.

144 Chapter 6 PHP: Hypertext Preprocessor

6.8 Debugging Scripts 164
6.9 Builtin Functions 177

6.9.1 String Functions 177
6.9.2 Array Functions 178
6.9.3 File Functions 180
6.9.4 Variable Handling Functions 181
6.9.5 Perl Regular Expression Functions 181
6.9.6 Error and Debugging Functions 182

6.10 Questions 183
6.11 Further Reading and References 183

6.1 Syntax

The PHP interpreter assumes everything is plain text to be ignored.
The advantage of this is that PHP commands can be embedded into
a HTML document. This method of parsing means that the PHP
elements of a script are “islands of code” that are interpreted inde-
pendently of the surrounding “sea” of HTML. These “islands of PHP
code” are not independent of each other though—they are parsed as
if they where one contiguous script.

A PHP scripting block starts with <?php and ends with ?>. A PHP
scripting block can be placed anywhere within a text document3.

Script 6.1: A basic PHP script

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE HTML PUBLIC
"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

<head>
<title>Minimilist HTML & PHP document</title>

</head>
<body>
<?php echo "Hello World"; ?>

</body>
</html>

Each PHP statement must end with a semicolon. The semicolon is a
separator used to distinguish one statement from another.

When interpreting PHP via a web server—the server passes the file to
the PHP interpreter4—which executes the PHP code in the file—the
output of the code becomes a part of the document—which is then
sent to the web client.

The server recognises a file that contains PHP code by the MIME type
of the document (see Chapter 8. The default MIME type for PHP

3 Within XML documents the block defined by <?name and ?> is called a Processing
Instruction. The “name” defines the interpreter the instruction is meant for

4 In Apache the PHP interpreter is incorporated into the server as a server module. The
server compiled for this course has PHP built into it.

c© USQ, June 12, 2012

6.2 Variables 145

documents is application/x-httpd-php which is normally mapped
to files that end in .php or .phtml.

Script 6.1 shows a basic PHP script that will print out “Hello World!”
to become part of a basic HTML page.

Exercise 6.1: Copy the code of Script 6.1 to file called script01.php

and a file script01.html. Serve the files from the Apache server.
Explain the differences in the displayed pages.

Exercise 6.2: Copy the code of Script 6.1 to file called script01.phps.
How is this page displayed?

PHP has a built in source displayer.

Exercise 6.3: Create a file called info.php and place the following
PHP code in it—

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE HTML PUBLIC
"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

<head>
<title>PHP Interpreter</title>
</head>
<body>
<?php phpinfo(); ?>

</body>
</html>

What is the output when this resource is downloaded from your
web site?

6.1.1 Comments

PHP recognises C, C++ and scripting style comments.

The comment styles ‘//’ or ‘#’ only comment to the end of the line
or the current block of PHP code, whichever comes first. This means
that HTML code after // ... ?> or # ... ?> will be printed—?>

breaks out of PHP mode and returns to HTML mode, and // or #

will not influence that (as long as ?> has a space in front of it!).

6.2 Variables

Variables in PHP start with a dollar sign followed by the name of the
variable. The variable name is case-sensitive. A valid variable name
starts with a letter or underscore, followed by any number of letters,
numbers, or underscores.

6.2.1 Types

PHP has eight data types— integer, float, boolean, string, array, ob-
ject, resource and null.

c© USQ, June 12, 2012

146 Chapter 6 PHP: Hypertext Preprocessor

Script 6.2: Including comments in PHP scripts

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE HTML PUBLIC
"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

<head>
<title>PHP Comments</title>

</head>
<body>
<p><?php echo "Hash is a comment in PHP";
Comments cannot effect
the end PHP construct ?> </p>

<p><?php echo "Double slash is a comment in PHP";
// Comments cannot effect
// the end PHP construct ?> </p>

<p><?php echo "C style block comments can also be used";
/* C style block comments are different

in that the comment covers multiple lines
and must be terminated */ ?> </p>

</body>
</html>

integer Integers are whole numbers, either positive or negative.

float Floats hold fractional numbers as well as very large integer
numbers,

boolean Booleans hold either true or false. Internally to PHP,
booleans are just integers. PHP considers the number 0 to be false,
and everything else to be true.

string Strings hold characters—literally “a string of characters”.
Strings can be as short or as long as you want, there’s no limit to
size. PHP considers strings to be case-sensitive which means that
some string functions have case-insensitive equivalents.

array Arrays hold multiple values like a container, and can even
hold arrays of arrays (multidimensional arrays).

object Like arrays, objects are complex variables that have multiple
values, but they can also have their own functions (called methods)
associated with them. PHP 5 allows for object-oriented programming.
Object-oriented programming using PHP will not be covered in this
course.

resource PHP provides an interface into many libraries that deal
with very different sorts of data. Resources are anything that is not

c© USQ, June 12, 2012

6.2 Variables 147

Script 6.3: Using variables in PHP scripts

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE HTML PUBLIC
"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

<head>
<title>PHP Variables</title>

</head>
<body>
<?php

$txt = "Hello World!";
echo $txt;
$num = 12379;
echo $num;

?>
</body>
</html>

PHP data. Internally, a resource variable holds a handle (pointer) to
the actual data, because it is created outside of PHP.

null Null is a special type and represents a variable with no value.

Loosely Typed

In PHP a variable does not need to be declared before being set. In
Script 6.3 variables where declared and a value assigned in the same
line. PHP automatically converts the variable to the correct data type,
depending on how it was set.

In strongly typed programming languages (C or C++ for example)
the name and type of a variable must be declared before it can be
used. Most scripting languages are loosely typed (perl, python or
shell scripts for example).

In PHP the variable is declared automatically when you use it. Unfor-
tunately this has the problem that PHP will issue warning messages
if variables are used before they have a value assigned to them.

Unset variables have the special type NULL.

Scope

Each variable has a life span in which it exists, known as its scope. It
is technically possible for a PHP script to have several variables called
$v in existence at one point in time; however, there can only be one
active $v at any one time.

Any variables not set inside a function or an object are considered
global. That is, they are accessible from anywhere else in the script,
except inside another function or object.

c© USQ, June 12, 2012

148 Chapter 6 PHP: Hypertext Preprocessor

6.2.2 True or False

The constant “true” is True, and “false” is False

PHP considers some values to be equivalent to True, and others
equivalent to False. Most non-zero numbers are true (e.g., 1, 73,
345129876), but 0, 0.0, 0.00000000 are all False.

Nearly any string with a value in it is considered to be true, so “k”,
“-234”, “false”, and “a string of characters” are all True. However,
an empty string “” and “0” are both False. Confusingly, the string
“0.0” is True.

An empty array as with an empty string are considered False.

The special type Null is considered False.

6.2.3 Strings

A string can be specified in three ways—single quotes, double quotes
or heredoc syntax.

Single Quotes The simplest way to specify a string is to enclose it
in single quotes (see Script 6.4).

To include single quote, you will need to escape it with a backslash
(\) (see Script 6.4).

Script 6.4: Using single quotes to define a string

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE HTML PUBLIC
"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

<head>
<title>Using single quotes</title>

</head>
<body>
<?php

$str1 = ’<h3>Single quoted string</h3>’;

Single quotes must be escaped within
strings defined by single quotes

$str2 = ’<h3>Don\’t do that</h3>’;

echo $str1;
echo $str2;

?>
</body>
</html>

Double Quotes If the string is enclosed in double-quotes ("), PHP
understands more escape sequences and PHP variables will be parsed.
Table 6.1 list the recognised escape characters.

c© USQ, June 12, 2012

6.2 Variables 149

Table 6.1: Escaped Characters

Escaped Meaning
Character

\n linefeed (LF or 0x0A (10) in ASCII)
\r carriage return (CR or 0x0D (13) in ASCII)
\t horizontal tab (HT or 0x09 (9) in ASCII)
\\ backslash
\$ dollar sign
\" double-quote
\[0-7]{1,3} a character in octal notation
\x[0-9A-Fa-f]{1,2} a character in hexadecimal notation

The most important feature of double-quoted strings is the fact that
variable names will be expanded. To correctly parse variable names
in a string the variable name should be enclosed in braces (see Script
6.5).

Script 6.5: Using double quotes to define a string

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE HTML PUBLIC
"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

<head>
<title>Using double quotes</title>

</head>
<body>
<?php

$name = ’John M. Smith’;

echo "<h3>Double quoted string</h3>";
place braces around variables
ensure the interpreter gets it right!

$str2 = "<h3>“{$name}” owes me \$30</h3>";

echo $str2;
?>
</body>
</html>

Heredoc Another way to delimit strings is by using heredoc syntax.
Heredoc syntax are a way of defining a multi-line string. Heredoc
syntax defines a unique word that terminates the multi-line string
(see Script 6.6).

It is very important to note that the line with the closing word contains
no other characters, except possibly a semicolon (;). That means
especially that the identifier may not be indented, and there may not
be any spaces or tabs after or before the semicolon.

c© USQ, June 12, 2012

150 Chapter 6 PHP: Hypertext Preprocessor

Script 6.6: Using heredoc syntax to define multi-line strings

<?xml version="1.0" encoding="UTF-8"?>
<?php
$heading=’HereDoc Example’;
$htmltype = <<<EOT
<!DOCTYPE HTML PUBLIC
"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

EOT;
$page = <<<EOT
{$htmltype}
<head>
<title>Using HereDoc Syntax</title>

</head>
<body>
<h1>{$heading}</h1>
This page is produced using Heredoc syntax.
</body>
</html>
EOT;
echo $page;
?>

Exercise 6.4: In Script 6.6 the variables in the $page heredoc are
surrounded by braces why? Why does nothing happen if the
braces are removed?

Experiment with strings in PHP and explain when braces are
required around variables within strings.

Access By Character

Characters within strings may be accessed and modified by specifying
the zero-based offset to the desired character. For example,

$str[42]=’6’

will modify the 43rd character in the string—string indexing starts at
zero.

String Functions

The ability to manipulate strings is important when building web
pages with PHP. For this reason PHP has a rich collection of string
functions and a powerful Perl-like regular expression engine.

Table 6.9 (in §6.9) lists most, but not all, of the string function that
are built into PHP.

Regular Expressions

Regular expressions offer more power over strings than string func-
tions, but can be difficult to use because their syntax can be confusing.

c© USQ, June 12, 2012

6.2 Variables 151

Regular expressions can:

• Replace text

• Test for a pattern within a string

• Extract a substring from within a string

A regular expression describes a pattern or a sequence of characters.
An expression is not something to be interpreted literally—t is some-
thing that needs to be evaluated.

The syntax of a regular expression must first be evaluated (the regular
expression is in effect compiled) to produce a pattern. The pattern is
then compared against a string (for example a line of text). To see
if the string contains a matching substring the first character of the
pattern is compared to the first character of the string. If there is a
match the second character of the pattern is compared to the second
character of the string. If the current pattern character fails to match
the current string character then the matching starts again at the start
of the pattern but now starting one character along in the string.

The power of regular expressions comes from the fact that patterns
are not restricted to literal characters. Regular expressions define a
set of meta-characters. Each meta-character has a special meaning in
a regular expression, that is, it can represent characters other than
itself.

PHP contains two ways to perform regular expressions, known as
POSIX-extended (equivalent to Unix Extended Regular Expressions)
and Perl-Compatible Regular Expressions (PCRE) . The PCRE func-
tions are more powerful and faster than the POSIX ones—and also
incorporate the POSIX-extended regular expression syntax as a sub-
set.

The functions and syntax for regular expression matching are beyond
the scope of this study-book and will not be covered—but can be found
in the PHP documentation.

6.2.4 Arrays

PHP has built-in support for arrays of data, and they are created using
the array(...) function or using the special operator [...].

An array is a normal PHP variable, but it works like a container. It
can contain values of any type. Values within an array are accessed
using a key. Each key:value pair is called an element of the array.

Exercise 6.5: Add comments to each line of Script 6.7.

Exercise 6.6: Explain the difference between an indexed array and
an associative array. Use Script 6.7 for examples.

Exercise 6.7: Modify Script 6.7 to use the array function array push()

to add more fruit to the fruit array.

At what array positions does array push add the fruit.

c© USQ, June 12, 2012

152 Chapter 6 PHP: Hypertext Preprocessor

Also use array unshift()—how is it different to array push().

Explain the purpose of the functions array pop() and array shift()

A key may be either an integer or a string. If only the value is speci-
fied, then the key is assumed to be an integer starting at zero for the
first element. This produces the traditional integer-indexed array. If
the key and the value are both specified then you have a traditional
associative array. See Script 6.7 for examples.

6.3 Operators

An operator is something that you feed with one or more values or
expressions, and which yields another value.

PHP has three groups of operators—the unary operator which oper-
ates on only one value, the binary operator which operates on two
values (by far the largest group) and the ternary operator which op-
erates on three values (there is only one operator in this group).

6.3.1 Arithmetic Operators

Table 6.2 lists the arithmetic operators found in PHP.

The division operator (“/”) returns a float value every time, even if
the two operands are integers (or strings converted to integers).

The Modulus operator (%) returns a negative value for a negative
numerator.

Table 6.2: Arithmetic Operators

Example Name Result
-$a Negation Negative of $a.
$a + $b Addition Sum of $a and $b.
$a - $b Subtraction Difference of $a and $b.
$a * $b Multiplication Product of $a and $b.
$a / $b Division Quotient of $a and $b.
$a % $b Modulus Remainder of $a divided by $b.

All of the binary operators above can be combined with the assignment
operator (“=”) to produce a shorthand binary operator—

$a = 5;
$b = 5;
$a *= 7;
$b = $b * 7;

both $a and $b have the value 35. The statements are equivalent.

Exercise 6.8: What is the return value of the quotient / operater if
one of the variables contains a string?

What does it mean to multiply two strings together?

c© USQ, June 12, 2012

6.3 Operators 153

6.3.2 Assignment Operator

The basic assignment operator is “=”. This operator is not that same
as “equal to”. It means that the left operand gets set to the value of
the expression on the right.

The value of an assignment expression is the value assigned. That is,
the value of “$a = 3” is 3. This means that the following—

$a = ($b = 5) * 9;

assigns the value 5 to $b and 45 to $a.

String Operator

There are only two string operators in PHP—

Concatenation—returns the second value appended to the first:

$c = $a . $b

Shorthand concatenation—appends the second value to the first:

$a .= $b

6.3.3 Comparison Operators

Comparison operators allow you to compare two values. The return
value is either True or False. Table 6.3 lists

Table 6.3: Comparison Operators

Example Name Result
$a == $b Equal TRUE if $a is equal to $b.
$a === $b Identical TRUE if $a is equal to $b, and

they are of the same type.
$a != $b Not equal TRUE if $a is not equal to $b.
$a <> $b Not equal TRUE if $a is not equal to $b.
$a !== $b Not identical TRUE if $a is not equal to $b,

or they are not of the same type.
$a < $b Less than TRUE if $a is strictly less than

$b.
$a > $b Greater than TRUE if $a is strictly greater

than $b.
$a <= $b Less than or equal to TRUE if $a is less than or equal

to $b.
$a >= $b Greater than or equal to TRUE if $a is greater than or

equal to $b.

Unlike strongly typed languages—weakly typed languages allow you
to compare different types. Normally one or both of the operands are
converted so they can be compared.

Table 6.4 shows how different types are compared.

c© USQ, June 12, 2012

154 Chapter 6 PHP: Hypertext Preprocessor

Table 6.4: Comparison of different types (order is unimportant)

Operand A Operand B Result
null string Convert null to "". Attempt numerical

comparison otherwise lexical compari-
son.

string string Attempt numerical comparison other-
wise lexical comparison.

boolean anything Convert to booleans: False<True
null anything Convert to booleans: False<True
string number Convert string to number—then stan-

dard comparison.
array array Array with fewer elements is smaller. If

they are the same length compare value
by value—until different values found.
Same length arrays must have the same
keys—otherwise they are incomparable.

6.3.4 Ternary Operator

Another conditional operator is the “? :” (or ternary) operator. It is
the same as the operator found in C.

The expression

(expr1) ? (expr2) : (expr3)

evaluates to expr2 if expr1 evaluates to True, and expr3 if expr1
evaluates to False.

See Script 6.8 for examples of using the ternary operator.

6.3.5 Increment/Decrement Operators

PHP supports C-style pre- and post-increment and decrement opera-
tors. See Table 6.5.

Table 6.5: Increment/Decrement Operators

Example Name Result
++$a Pre-increment Increments $a by one, then returns $a.
$a++ Post-increment Returns $a, then increments $a by one.
--$a Pre-decrement Decrements $a by one, then returns $a.
$a-- Post-decrement Returns $a, then decrements $a by one.

6.3.6 Logical Operators

Table 6.6 lists the logical operators.

c© USQ, June 12, 2012

6.3 Operators 155

Table 6.6: Logical Operators

Example Name Result
$a and $b And True if both $a and $b are

True.
$a or $b Or True if either $a or $b is True.
$a xor $b Xor True if either $a or $b is True,

but not both.
! $a Not True if $a is not True.
$a && $b And True if both $a and $b are

True.
$a || $b Or True if either $a or $b is True.

The reason for the two different variations of “and” and “or” operators
is that they operate at different precedences. See Table 6.8 for operator
precedence.

As in many languages logical expressions are evaluated left to right
and evaluation stops when an unambiguous answer is assured. Script
6.8 illustrates this ability to short-circuit evaluation.

Exercise 6.9: Comment every line of Script 6.8.

Exercise 6.10: Explain the following line of code

$fh=fopen("filename.txt","r") or
exit("Failed to open file");

6.3.7 Array Operators

Table 6.7 lists the array operators. See also Table 6.10 for array func-
tions.

The Union operator (+) appends the right hand array to the left hand
array—without over-writing values in the left hand array if keys are
duplicated.

Table 6.7: Array Operators

Example Name Result
$a + $b Union Union of $a and $b.
$a == $b Equality True if $a and $b have the same

key/value pairs.
$a === $b Identity True if $a and $b have the same

key/value pairs in the same order
and of the same types.

$a != $b Inequality True if $a is not equal to $b.
$a <> $b Inequality True if $a is not equal to $b.
$a !== $b Non-identity True if $a is not identical to $b.

c© USQ, June 12, 2012

156 Chapter 6 PHP: Hypertext Preprocessor

6.3.8 Operator Precedence

As in many languages, PHP has a set of rules (operator precedence and
associativity) that decide how complicated expressions are processed.

Operator precedence are only enforced if you fail to be explicit about
your instructions. Unless you have very specific reason to do otherwise,
you should always use parentheses in your expressions to make your
actual meaning very clear—both to PHP and to others reading your
code.

Table 6.8 lists the precedence of operators—with the highest-precedence
operators listed at the top of the table. Operators on the same line
have equal precedence, in which case their associativity decides which
order to evaluate them in.

Table 6.8: Operator Precedence

Associativity Operators Type
left [array()
non-associative ++ -- increment/decrement
left * / % arithmetic
left + - . arithmetic and string
left << >> bitwise†

non-associative < <= > >= comparison
non-associative == != === !== comparison
left & bitwise† and references†

left ^ bitwise†

left | bitwise†

left && logical
left || logical
left ? : ternary
right = += -= *= /= .= assignment

%= &= |= ^= <<= >>=

left and logical
left xor logical
left or logical
left , many uses
† Not discussed in this Study Book.

6.4 Conditional Statements

Conditional statements are one of the most important features of any
language. They allow for the conditional execution of code fragments.

6.4.1 if. . . elsif. . . else

The PHP if structure is similar to that of the programming language
C.

if (expr)
statement;

c© USQ, June 12, 2012

6.4 Conditional Statements 157

if (expr)
{

statement;
...
statement;

}

The expression “expr” is evaluated to its Boolean value. If the ex-
pression evaluates to True, PHP will execute the following statement
or statement group. If it evaluates to False, PHP will ignore the
statement or statement group.

If statements can be nested infinitely within other if statements,
which provides complete flexibility for conditional execution of blocks
of code.

An if statement can be extended using else to execute a statement or
statement group in case the expression in the if statement evaluates
to False.

if (expr)
{

statement;
...
statement;

} else {
statement;
...
statement;

}

There can only be one else statement associated with an if statement.

if (expr)
{

statement;
...
statement;

} elseif (expr) {
statement;
...
statement;

} else {
statement;
...
statement;

}

Like else, the elseif statement extends an if statement to execute a dif-
ferent statement or statement group if the original if expression eval-
uates to False. However, unlike else, it will execute the alternative
statement or statement group only if the elseif conditional expression
evaluates to True.

Exercise 6.11: Modify the code of Script 6.9 so that it prints out
the correct day of the week—not just weekday.

c© USQ, June 12, 2012

158 Chapter 6 PHP: Hypertext Preprocessor

6.4.2 Switch

The switch statement is similar to a series of ifelse statements on
the same expression. The switch statement is used to compare the
same variable (or expression) with many different values, and execute
a different piece of code depending on which value it equals to.

switch (expr)
{
case value1:

statement;
...
statement;

case value2:
statement;
...
statement;
break;

default:
statement;
...
statement;

}

The switch statement executes statement by statement. No code is
executed until a case statement is found with a value that matches
the value of the switch expression. PHP continues to execute the
statements until the end of the switch block, or the first time it sees
a break statement. If a break statement does not appear at the end
of a case’s statement list, PHP will go on executing the statements
of the following case or cases. This behaviour is the same as the C
programming language.

In a switch statement, the condition is evaluated only once and the
result is compared to each case statement. In an elseif statement, the
condition is evaluated each time.

A special case is the default case. This case matches anything that
was not matched by any of the other cases. The way PHP evaluates
the switch statement implies that the default case should be the last
case in the statement.

Exercise 6.12: Modify the code of Script 6.10 so that it prints out
the correct day of the week—not just weekday.

As will as the name of the day also print the day of the month
and day of the year.

6.5 Looping

6.5.1 while

The simplest type of loop in PHP is the while loop. They are identical
to the while loops of C.

While loops are used for the repetitive execution of a block of code.
Execution continues only so long as a given condition is true.

c© USQ, June 12, 2012

6.5 Looping 159

while (expr)
{

statement;
...
statement;

}

The while statement tells PHP to execute the statement or statement
group repeatedly, as long as the while expression evaluates to True.
The value of the expression is checked each time at the beginning of
the loop, so even if this value changes during the execution of the
statements, execution will not stop until the end of the iteration.

It is possible the while expression evaluates to False from the very
start—this means that no statement within the loop will be evaluated.

The break statement can be used to break out of a while loop.

The continue statement can be used to skip the rest of the statements
of the current iteration and jump to the truth expression evaluation
for the next iteration.

6.5.2 do. . . while

The main difference between while loops and do-while loops is when
the truth expression is evaluated. In while loops the truth expression
is evaluated at the start of the loop–in do-while loops the truth ex-
pression is evaluated at the end of the loop. This means that do-while
loops will always evaluate the loop’s statements at least once—even if
the truth expression evaluates to False the first time through.

The syntax of a do-while loop is:

do
{

statement;
...
statement;

} while (expr);

The break statement can be used to break out of a do-while loop.

The continue statement can be used to skip the rest of the statements
of the current iteration and jump to the truth expression evaluation
for the next iteration.

6.5.3 for

The PHP for loop behave like their C counterparts. The syntax of a
for loop is:

for (expr1; expr2; expr3)
{

statement;
...
statement;

}

c© USQ, June 12, 2012

160 Chapter 6 PHP: Hypertext Preprocessor

The first expression (expr1) is evaluated once at the beginning of the
loop.

At the beginning of each iteration, expr2 is evaluated. If it evaluates
to True the loop continues and the statement group is executed. If it
evaluates to False, the execution of the loop stops.

At the end of each iteration, expr3 is evaluated.

Each of the expressions can be empty or contain multiple expressions
separated by commas. In expr2, all expressions separated by a comma
are evaluated but the result is taken from the last expression. If expr2
is empty the loop will be run indefinitely (PHP implicitly considers it
as True, as in C).

6.5.4 foreach

The foreach statement works only with arrays and is used to iterate
over the elements within an array. It will issue an error if it is used
with any other data type.

There are two syntaxes—the second is a minor but useful extension of
the first:

foreach (array_expression as $value)
{

statement;
...
statement;

}

foreach (array_expression as $key => $value)
{

statement;
...
statement;

}

The first form loops over the array given by array expression. On each
iteration, the value of the current element is assigned to $value and
the internal array pointer is advanced by one.

The second form does the same thing, with the addition that the
current element’s key will be assigned to the variable $key.

6.6 Functions

Despite the fact that PHP comes with a large selection of functions
that perform many tasks—good programming practices dictates that
large scripts be broken into smaller parts or functions. By breaking a
large script into smaller functions, the script is easier to understand,
control, maintain, and debug.

The syntax of a simple function declaration in PHP is:

function function_name()
{

c© USQ, June 12, 2012

6.6 Functions 161

statement;
...
statement;

}

Functions are defined using the function keyword followed by the
function name. Function names follow the naming conventions of vari-
ables.

PHP function behave similarly to functions in other programming lan-
guages:

• Any valid PHP code may appear inside a function.

• Functions need not be defined before they are referenced (except
when a function is defined within a conditional statement—see
the PHP manual).

• The function can return a value using the return statement. Only
one value can be returned. The return value can be of any type—
including an array or object.

• Functions can be called recursively.

Script 6.15 shows the use of a simple user defined function.

6.6.1 Function Arguments

Information may be passed to functions via the argument list, which
is a comma-delimited list of expressions.

By default arguments are passed to functions by value. PHP also
supports default values for arguments, and variable length argument
lists.

Script 6.15 shows passing values to a function via the argument list.

Default Argument Values

A function definition as well as defining the arguments to the function
can also define default values for the arguments. The default values
are used if the function is called with fewer than the defined number
of arguments.

The default value must be a constant expression not a variable. It can
be a string, scalar or array constant.

When using default arguments, all arguments with defaults should be
on the right side of any non-default arguments—otherwise the parser
will become confused.

Script 6.15 shows how to set default values for arguments.

6.6.2 Variable Scope

Each variable has a life span in which it exists, this is known as the
variables scope. It is normal for PHP script to have several variables

c© USQ, June 12, 2012

162 Chapter 6 PHP: Hypertext Preprocessor

called $var in existence at one point in time; however, there can only
be one active $var at any one time.

Global Variables Any variables not set inside a function or an ob-
ject are considered global. That is, they are accessible from anywhere
in the script, except inside another function.

Local Variables Variables created or set within a function are local
to that function—even if they have the same name as a global variable.
Normally variables created within the local scope of a function are
unset when program execution leaves the function.

Global Keyword The keyword “global” can be used in functions
to declare variables to be “global”. That is, all references to variables
declared “global” within a function will refer to the global version of
the variable. There is no limit to the number of variables that can be
declared global within a function.

The variable must exist outside of the function before it can be de-
clared “global” within a function.

Static Keyword A static variable can only exist within a local func-
tion scope, but unlike normal local variables the “static” variable does
not lose its value when program execution leaves this scope.

6.7 File Handling

There are a number of ways to open and read files in PHP. Each
method has its own advantages and disadvantages. The extent of the
number of methods in PHP is an indication of the varied uses file
handling has when writing scripts.

From within PHP scripts files can be created, deleted, appended,
copied, read and written. A survey of all the file handling functions
is beyond the scope of this chapter—for a complete list please browse
the PHP manual.

Below are some of the the file Input/Output functions available in
PHP with a brief description of their usage. For a more complete list
of file functions see Section 6.9.3 below and the PHP manual.

Note File handling is Operating System dependent. The most obvious
difference is the path separator. Under Windows the path sepa-
rator is a backslash—which will need to be escaped with another
backslash when defining paths to files.

6.7.1 C-style file handling

Many of the file handling functions available in C are also available in
PHP. See the PHP manual for the complete list.

c© USQ, June 12, 2012

6.7 File Handling 163

fopen() and fclose()

The functions fopen opens a file for reading or writing. The function
takes two parameters—the file to open, and how it is to be accessed.
The first parameter is a string containing the name of the file to open.
The second parameter is a string containing a letter defining how the
file defined in the first parameter is to accessed—either written to (w),
appended to (a), or read from (r).

The fopen() function returns a file handle resource that points to a
structure in memory that contains information about the opened file.
The file handle is passed to reading/writing functions so they know
which file is to be read from or written to.

The following is an example of using fopen():

$fh_logfile = fopen("${script}.log", "w")
OR die ("Log file is not writeable!\n");

The variable $fh_logfile contains the file handle that has to be
passed to file access functions.

fread() and fwrite()

The fread() function takes two parameters: a file handle to read from
(this is the return value from fopen()) and the number of bytes to
read. Normally the length of a file is unknown—but the end of a file
can be tested for using feof(), which returns true if you are at the
end of the file or false otherwise.

The opposite of fread() is fwrite(), which also works with the file
handle returned by fopen(). This function takes a string to write
as a second parameter, and an optional third parameter where you
can specify how many bytes to write. If you do not specify the third
parameter, all of the second parameter is written out to the file.

Script 6.18 shows the C-style file handling functions. Most C-style
functions are available in PHP—see Section 6.9.3 or the PHP manual.

6.7.2 High-level file handling

readfile()

The function readfile will read a file and output it directly. No form of
processing is attempted on the read file. When passed a filename as
its only parameter, readfile() will attempt to open it, read it all into
memory, then output.

If successful, readfile() will return an integer equal to the number of
bytes read from the file. If unsuccessful, readfile() will return False.
There are many reasons for failure to read the file—for example, it
might not exist, or the web server does not have permission to read
the file.

c© USQ, June 12, 2012

164 Chapter 6 PHP: Hypertext Preprocessor

file get contents() & file put contents()

The function file get contents() takes one parameter—the name
of the file to open. Unlike readfile() however, it does not output
any data. Instead, it will return the contents of the file as a string,
complete with new line characters where appropriate. On failure it
will return False.

file get contents() is equivalent to fopen, fread() and fclose()

in one function.

The function file put contents() is equivalent to fopen, fwrite()
and fclose() in one function. It takes two parameters: the filename
to write to and the content to write, respectively. If file put contents()

is successful, it will return the number of bytes written to the file; oth-
erwise, it will return False.

You can pass an optional third parameter to file put contents()

which, if set to FILE APPEND, will append the text in your second pa-
rameter to the existing text in the file. If you do not use FILE APPEND,
the existing text will be overwritten. There are other parameters—see
the PHP manual.

file()

The function file() takes one parameter—the name of the file to
open. It behaves similarly to file get contents() in that it reads
the entire file but instead of returning a string the function will return
an array—one line per array element.

6.8 Debugging Scripts

If you are experiencing a problem with your script, the time-honoured
way to figure out what’s going on is to sprinkle your code with lots of
print statements.

This method has benefits: it is easy to use, and will generally find the
problem through trial and error. The down sides are clear: you need
to edit your script quite heavily to make use of the print statements,
then you need to re-edit it once you have found the problem to take
the print statements back out.

By combining the print statement with var dump() to inspect vari-
able contents at various points in the script can speed up error detec-
tion.

PHP also has sophisticated error handling functions that can enhance
and replace the default error reporting of PHP. These functions doc-
umented in the PHP manual but are beyond the scope of this course.
See Table 6.14 for a list of some of the error and debugging functions
available.

c© USQ, June 12, 2012

6.8 Debugging Scripts 165

Script 6.7: Using arrays in PHP

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE HTML PUBLIC
"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

<head>
<title>Using Arrays in PHP</title>

</head>
<body>
<h2>Fruit & Veg</h2>
<?php

$fruit = array("Bananas", "Apples", "Oranges", "Pears");

echo "fruit[0]=" . $fruit[0] . "
\n";
echo "fruit[1]=" . $fruit[1] . "
\n";
echo "fruit[3]=" . $fruit[3] . "
\n";

$fruit[4] = "Nectarine";

echo "fruit[4]=" . $fruit[4] . "
\n";

$veg = array("a"=>"Artichoke", "b"=>"Bean", "c"=>"Carrot");

echo ’veg["a"]=’ . $veg["a"] . "
\n";
echo ’veg["b"]=’ . $veg["b"] . "
\n";
echo ’veg["c"]=’ . $veg["c"] . "
\n";

$veg["c"] = "Potato";
$veg["p"] = "Pumpkin";

echo ’veg["c"]=’ . $veg["c"] . "
\n";
echo ’veg["p"]=’ . $veg["p"] . "
\n";

?>

</body>
</html>

c© USQ, June 12, 2012

166 Chapter 6 PHP: Hypertext Preprocessor

Script 6.8: Example of using logical operators and the ternary operator.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE HTML PUBLIC
"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

<head>
<title>Logical expressions in PHP</title>

</head>
<body>
<h2>Logical expressions</h2>
An example of a logical operator’s ability
to short-circuit evaluation.
<p>
<?php
$a = (false && print("This will never be printed"));
$b = (true || print("This will never be printed"));
$c = (false and print("This will never be printed"));
$d = (true or print("This will never be printed"));

print "<pre>\n";
print "\$a=’$a’\n";
$a ? print "\$a is true\n" : print "\$a is false\n";
print "\$b=’$b’\n";
print "\$c=’$c’\n";
print "\$d=’$d’\n";
$b && $d ? print "\$b & \$d are true\n"

: print "\$b or \$d is false\n";
print "</pre>\n";

?>
</p>
</body>
</html>

c© USQ, June 12, 2012

6.8 Debugging Scripts 167

Script 6.9: Examples of using the if statement

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE HTML PUBLIC
"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

<head>
<title>If statement in PHP</title>

</head>
<body>
<h2>If statement</h2>
<?php
$jd = unixtojd();
$day = JDDayOfWeek($jd);

if ($day == 0)
{
print "It is Sunday
\n";

}
elseif ($day == 6)
{
print "It is Saturday
\n";

}
else
{
print "It is a Weekday
\n";

}
?>
</p>
</body>
</html>

c© USQ, June 12, 2012

168 Chapter 6 PHP: Hypertext Preprocessor

Script 6.10: Examples of using the switch statement

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE HTML PUBLIC
"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

<head>
<title>Switch statement in PHP</title>

</head>
<body>
<h2>Switch statement</h2>
<?php
$jd = unixtojd();

switch (JDDayOfWeek($jd))
{

case 0:
print "It is Sunday
\n";
break;

case 1:
case 2:
case 3:
case 4:
case 5:

print "It is a Weekday
\n";
break;

case 6:
print "It is Saturday
\n";
break;

default:
print "Error has occured!
\n";

}
?>
</p>
</body>
</html>

c© USQ, June 12, 2012

6.8 Debugging Scripts 169

Script 6.11: Example of using the while statement

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE HTML PUBLIC
"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

<head>
<title>While Statement in PHP</title>

</head>
<body>
<h2>While Statement</h2>
<?php

$count = 9;

echo "10...
\n";

while ($count > 0)
{
echo " {$count}...
\n";
$count--;

}

echo " 0...The End!
\n";
?>
</body>
</html>

c© USQ, June 12, 2012

170 Chapter 6 PHP: Hypertext Preprocessor

Script 6.12: Example of using the do-while statement

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE HTML PUBLIC
"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

<head>
<title>Do-While Statement in PHP</title>

</head>
<body>
<h2>Do-While Statement</h2>
<?php

$count = 10;

do {
if($count == 10)
{
echo "10...
\n";

}
elseif ($count == 0)
{
echo " 0...The End!
\n";

}
else
{
echo " {$count}...
\n";

}
$count--;

} while ($count >= 0)
?>
</body>
</html>

c© USQ, June 12, 2012

6.8 Debugging Scripts 171

Script 6.13: Example of using the for statement

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE HTML PUBLIC
"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

<head>
<title>For Statement in PHP</title>
</head>
<body>
<h2>For Statement</h2>
<?php

for($count=10; $count>=0; $count--)
{

if($count == 10)
{
echo "10...
\n";

}
elseif ($count == 0)
{
echo " 0...The End!
\n";

}
else
{
echo " {$count}...
\n";

}
}
?>
</body>
</html>

c© USQ, June 12, 2012

172 Chapter 6 PHP: Hypertext Preprocessor

Script 6.14: Example of using the foreach statement

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE HTML PUBLIC
"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

<head>
<title>Foreach Statement in PHP</title>
<style type="text/css">
td, th {text-align: center;

padding-left: 1em;
padding-right: 1em;}

</style>
</head>
<body>
<h2>Foreach Statement</h2>
<table>
<tr>

<th>Student</th>
<th>Assignment 1</th>
<th>Assignment 2</th>
<th>Assignment 3</th>

</tr>
<?php

$results = array("W1234567"=>array(78,45,89),
"W1236984"=>array(63,33,65),
"Q1234567"=>array(56,62,90),
"D1234567"=>array(23,43,54));

foreach ($results as $suid => $marks)
{
print<<<EOT
<tr>
<th>{$suid}</th>
<td>{$marks[0]}</td>
<td>{$marks[1]}</td>
<td>{$marks[2]}</td>
</tr>
EOT;
}
?>
</table>
</body>
</html>

c© USQ, June 12, 2012

6.8 Debugging Scripts 173

Script 6.15: Example of defining and using a function

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE HTML PUBLIC
"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

<head>
<title>Functions in PHP</title>

</head>
<body>
<h2>Functions in PHP</h2>
<?php
function reverse($fullname, $comma=false) {

if (! $fullname) return null;
$words=explode(" ",$fullname);
if(count($words)<=1) return $fullname;
$last=array_pop($words);
if($comma) {

array_unshift($words, $last, ",");
} else {

array_unshift($words, $last);
}
return implode(" ", $words);

}

echo reverse("John M. Smith"), "
\n";
echo reverse("George Jones"), "
\n";
echo reverse("Emmanual Kant",true), "
\n";
echo reverse("René Descartes", true), "
\n";

?>
</body>
</html>

c© USQ, June 12, 2012

174 Chapter 6 PHP: Hypertext Preprocessor

Script 6.16: Example of variable scope

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE HTML PUBLIC
"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

<head>
<title>Variable Scope in PHP</title>

</head>
<body>
<h2>Variable Scope</h2>
<?php

function flocal() {
$name="George F. Jones";
echo "Function flocal: name=$name
\n";

}
function fglobal() {
global $name;
$name="Samual A. Johnson";
echo "Function fglobal: name=$name
\n";

}
$name = "John M. Smith";
echo "Main script: name=$name
\n";
flocal();
echo "Main script: name=$name
\n";
fglobal();
echo "Main script: name=$name
\n";

?>
</body>
</html>

c© USQ, June 12, 2012

6.8 Debugging Scripts 175

Script 6.17: Example of static variables and recursion

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE HTML PUBLIC
"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

<head>
<title>Static variables and Recursion in PHP</title>

</head>
<body>
<h2>Static Variables and Recursion</h2>
<?php
function countdown()
{

static $count = 10;

echo "{$count}...
\n";
$count--;
if ($count > 0) {

countdown();
} else {

echo "0...The End!
\n";
}

}

countdown();
?>
</body>
</html>

c© USQ, June 12, 2012

176 Chapter 6 PHP: Hypertext Preprocessor

Script 6.18: Example of using C-style file handling

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE HTML PUBLIC
"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

<head>
<title>C-style file handling in PHP</title>
<style type="text/css">
.error {color: red;}

</style>
</head>
<body>
<h2>Reading from and writing to files</h2>
<?php
$basename="script19";
$logfile=$basename . ".log";
$body=$basename . ".php";
$fhlog=fopen($logfile,"a") or
die("Script19: failed to open logfile");

$fhbody=fopen($body,"r");
if(! $fhbody) {
fwrite($fhlog,"Failed to open file: $body\n");
fclose($fhlog);
print ’<h1 class="error">’;
print "Failed to open file: $body";
print ’</h1>\n’;
} else {
print ’<pre>’;
while (!feof($fhbody)) {

$block = fread($fhbody, 1024);
print htmlspecialchars($block);

}
fclose($fhbody);
print ’</pre>’;
fwrite($fhlog,"Successfully built page\n");
fclose($fhlog);
}

?>
</body>
</html>

c© USQ, June 12, 2012

6.9 Builtin Functions 177

6.9 Builtin Functions

6.9.1 String Functions

Table 6.9: List of most, but not all of the PHP built-in string functions

Function Description

addslashes Quote string with slashes
chr Return a specific character
chunk split Split a string into smaller chunks
count chars Return information about characters used in a string
crypt One-way string encryption (hashing)
echo Output one or more strings
explode Split a string by string
fprintf Write a formatted string to a stream
html entity decode Convert all HTML entities to their applicable characters
htmlentities Convert all applicable characters to HTML entities
htmlspecialchars decode Convert special HTML entities back to characters
htmlspecialchars Convert special characters to HTML entities
implode Join array elements with a string
join Alias of implode()
ltrim Strip whitespace (or other characters) from the beginning of a

string
nl2br Inserts HTML line breaks before all newlines in a string
ord Return ASCII value of character
parse str Parses the URL query string into variables
print Output a string
printf Output a formatted string
quotemeta Quote meta characters
rtrim Strip whitespace (or other characters) from the end of a string
sprintf Return a formatted string
sscanf Parses input from a string according to a format
str ireplace Case-insensitive version of str replace().
str pad Pad a string to a certain length with another string
str repeat Repeat a string
str replace Replace all occurrences of the search string with the replacement

string
str split Convert a string to an array
str word count Return information about words used in a string
strcasecmp Binary safe case-insensitive string comparison
strchr Alias of strstr().
strcmp Binary safe string comparison
strcoll Locale based string comparison
strcspn Find length of initial segment not matching mask
strip tags Strip HTML and PHP tags from a string
stripos Find position of first occurrence of a case-insensitive string
stripslashes Un-quote string quoted with addslashes().

Continued on next page

c© USQ, June 12, 2012

178 Chapter 6 PHP: Hypertext Preprocessor

Continued from previous page
Function Description

stristr Case-insensitive strstr().
strlen Get string length
strncasecmp Binary safe case-insensitive string comparison of the first n char-

acters
strncmp Binary safe string comparison of the first n characters
strpbrk Search a string for any of a set of characters
strpos Find position of first occurrence of a string
strrchr Find the last occurrence of a character in a string
strrev Reverse a string
strripos Find position of last occurrence of a case-insensitive string in a

string
strrpos Find position of last occurrence of a char in a string
strspn Find length of initial segment matching mask
strstr Find first occurrence of a string
strtok Tokenize string
strtolower Make a string lowercase
strtoupper Make a string uppercase
strtr Translate certain characters
substr compare Binary safe optionally case insensitive comparison of 2 strings

from an offset, up to length characters
substr count Count the number of substring occurrences
substr replace Replace text within a portion of a string
substr Return part of a string
trim Strip whitespace (or other characters) from the beginning and end

of a string
ucfirst Make a string’s first character uppercase
ucwords Uppercase the first character of each word in a string
vfprintf Write a formatted string to a stream
vprintf Output a formatted string
vsprintf Return a formatted string
wordwrap Wraps a string to a given number of characters using a string

break character

6.9.2 Array Functions

Table 6.10: List of most, but not all of the PHP built-in array functions

Function Description

array combine Creates an array by using one array for keys and another for its
values

array count values Counts all the values of an array
array fill Fill an array with values
array filter Filters elements of an array using a callback function
array flip Exchanges all keys with their associated values in an array
array key exists Checks if the given key or index exists in the array
array keys Return all the keys of an array
array map Applies the callback to the elements of the given arrays

Continued on next page

c© USQ, June 12, 2012

6.9 Builtin Functions 179

Continued from previous page
Function Description

array merge Merge one or more arrays
array multisort Sort multiple or multi-dimensional arrays
array pad Pad array to the specified length with a value
array pop Pop the element off the end of array
array product Calculate the product of values in an array
array push Push one or more elements onto the end of array
array rand Pick one or more random entries out of an array
array reduce Iteratively reduce the array to a single value using a callback func-

tion
array reverse Return an array with elements in reverse order
array search Searches the array for a given value and returns the corresponding

key if successful
array shift Shift an element off the beginning of array
array slice Extract a slice of the array
array splice Remove a portion of the array and replace it with something else
array sum Calculate the sum of values in an array
array unique Removes duplicate values from an array
array unshift Prepend one or more elements to the beginning of an array
array values Return all the values of an array
array walk recursive Apply a user function recursively to every member of an array
array walk Apply a user function to every member of an array
array Create an array
arsort Sort an array in reverse order and maintain index association
asort Sort an array and maintain index association
compact Create array containing variables and their values
count Count elements in an array, or properties in an object
current Return the current element in an array
each Return the current key and value pair from an array and advance

the array cursor
end Set the internal pointer of an array to its last element
extract Import variables into the current symbol table from an array
in array Checks if a value exists in an array
key Fetch a key from an associative array
krsort Sort an array by key in reverse order
ksort Sort an array by key
list Assign variables as if they were an array
next Advance the internal array pointer of an array
prev Rewind the internal array pointer
range Create an array containing a range of elements
reset Set the internal pointer of an array to its first element
rsort Sort an array in reverse order
shuffle Shuffle an array
sort Sort an array
uasort Sort an array with a user-defined comparison function and main-

tain index association
Continued on next page

c© USQ, June 12, 2012

180 Chapter 6 PHP: Hypertext Preprocessor

Continued from previous page
Function Description

uksort Sort an array by keys using a user-defined comparison function
usort Sort an array by values using a user-defined comparison function

6.9.3 File Functions

Table 6.11: List of most, but not all of the PHP built-in file functions

Function Description

basename Returns filename component of path
copy Copies file
delete See unlink or unset
dirname Returns directory name component of path
fclose Closes an open file pointer
feof Tests for end-of-file on a file pointer
fflush Flushes the output to a file
fgetc Gets character from file pointer
fgetcsv Gets line from file pointer and parse for CSV fields
fgets Gets line from file pointer
fgetss Gets line from file pointer and strip HTML tags
file exists Checks whether a file or directory exists
file get contents Reads entire file into a string
file put contents Write a string to a file
file Reads entire file into an array
filesize Gets file size
filetype Gets file type
fnmatch Match filename against a pattern
fopen Opens file or URL
fpassthru Output all remaining data on a file pointer
fputcsv Format line as CSV and write to file pointer
fputs Alias of fwrite
fread Binary-safe file read
fscanf Parses input from a file according to a format
fseek Seeks on a file pointer
fwrite Binary-safe file write
glob Find pathnames matching a pattern
is dir Tells whether the filename is a directory
is executable Tells whether the filename is executable
is file Tells whether the filename is a regular file
is readable Tells whether the filename is readable
is writable Tells whether the filename is writable
is writeable Alias of is writable
mkdir Makes directory
pathinfo Returns information about a file path
pclose Closes process file pointer

Continued on next page

c© USQ, June 12, 2012

6.9 Builtin Functions 181

Continued from previous page
Function Description

popen Opens process file pointer
readfile Outputs a file
realpath Returns canonicalized absolute pathname
rename Renames a file or directory
rmdir Removes directory
tempnam Create file with unique file name
tmpfile Creates a temporary file
unlink Deletes a file

6.9.4 Variable Handling Functions

Table 6.12: List of most, but not all of the PHP built-in variable handling functions

Function Description

doubleval Alias of floatval
empty Determine whether a variable is empty
floatval Get float value of a variable
gettype Get the type of a variable
intval Get the integer value of a variable
is array Finds whether a variable is an array
is binary Finds whether a variable is a native binary string
is bool Finds out whether a variable is a boolean
is buffer Finds whether a variable is a native unicode or binary string
is callable Verify that the contents of a variable can be called as a function
is double Alias of is float
is float Finds whether the type of a variable is float
is int Find whether the type of a variable is integer
is integer Alias of is int
is long Alias of is int
is null Finds whether a variable is NULL
is numeric Finds whether a variable is a number or a numeric string
is real Alias of is float
is scalar Finds whether a variable is a scalar
is string Find whether the type of a variable is string
is unicode Finds whether a variable is a unicode string
isset Determine whether a variable is set
print r Prints human-readable information about a variable
settype Set the type of a variable
strval Get string value of a variable
unset Unset a given variable
var dump Dumps information about a variable
var export Outputs or returns a parsable string representation of a variable

6.9.5 Perl Regular Expression Functions

Table 6.13: List of most, but not all of the PHP built-in PCRE Regular Expression functions

c© USQ, June 12, 2012

182 Chapter 6 PHP: Hypertext Preprocessor

Function Description

preg grep Return array entries that match the pattern
preg last error Returns the error code of the last PCRE regex execution
preg match all Perform a global regular expression match
preg match Perform a regular expression match
preg quote Quote regular expression characters
preg replace Perform a regular expression search and replace
preg split Split string by a regular expression

6.9.6 Error and Debugging Functions

Table 6.14: List of some of the Error functions available in PHP functions

Function Description

assert options Set/get the various assert flags
assert Checks if assertion is FALSE
debug backtrace Generates a backtrace
debug print backtrace Prints a backtrace
error get last Get the last occurred error
error log Send an error message somewhere
error reporting Sets which PHP errors are reported
restore error handler Restores the previous error handler function
restore exception handler Restores the previously defined exception handler function
set error handler Sets a user-defined error handler function
set exception handler Sets a user-defined exception handler function
trigger error Generates a user-level error/warning/notice message

c© USQ, June 12, 2012

6.10 Questions 183

6.10 Questions

Short Answer Questions

Q. 6.13: Explain what the term “to parse” means.

Q. 6.14: How does the PHP module recognise PHP commands em-
bedded in a HTML document?

Q. 6.15: How does the Apache server know that a particular docu-
ment may have PHP commands embedded in it?

Q. 6.16: What are escape characters in a string?

Q. 6.17: What is a “boolean” test of a variable?

Q. 6.18: How is a boolean test done on variables that are not defined
as “boolean”—that is integers, floats arrays and strings?

Q. 6.19: Explain the difference between “strongly typed”, “loosely
typed” and “typeless” languages. Give examples.

Q. 6.20: What does “the scope” of a variable mean? What is the
scope of a variable defined within a PHP function?

Q. 6.21: Explain the difference when a string of characters are en-
closed in single quotes and double quotes.

Q. 6.22: What is a “regular expression”?

Q. 6.23: Explain why the equals character “=” is called the “assign-
ment” operator and not “equals”.

Q. 6.24: Explain how a string can be “greater” or “less” than an-
other string.

Q. 6.25: Why is it necessary to define operator precedence. Give
examples.

Q. 6.26: Give examples of using the break and continue keywords
within a loop. How are they different?

Q. 6.27: The “fopen” function returns a “file handle”—what is a file
handle? Why is it needed?

Q. 6.28: When using the “fopen” function how do you know that it
has succeeded? Write a code snippet to illustrate your answer.

6.11 Further Reading and References

• PHP home site—www.php.net

• The best reference for PHP is the PHP manual itself. The manual
can be found on the course web site.

• The online PHP manual (at the PHP site) is extremely useful as
it is dynamic and has user additions to it.

c© 2009 Leigh Brookshaw
Department of Mathematics and Computing, USQ.

c© USQ, June 12, 2012

http://www.php.net/

184 Chapter 6 PHP: Hypertext Preprocessor

c© USQ, June 12, 2012

II. Server Side

186

c© USQ, June 12, 2012

Chapter 7 HyperText Transfer Protocol

The Hypertext transfer protocol is the language the web client and
web server talk to each other. Like many protocols it is a clear text
language designed for computer and human interpretation. Under-
standing the language spoken by web clients and servers is vital if you
wish to be able to administer a web site.

The version of the Hypertext transfer protocol we will be describing
here is 1.1 This module is not a definitive reference for the transfer
protocol, but covers the main aspects of the language. The course
resources directory contains a copy of the complete definition of the
language, RFC2616.

Chapter contents
7.1 Request Phase 189

7.1.1 The Request Method 190
7.1.2 The Request Header 191
7.1.3 The Request Data 194

7.2 Response Phase 194
7.2.1 Response Status Codes 194
7.2.2 The Response Header 199
7.2.3 The Response Data 200

7.3 Questions 200
7.4 Further Reading and References 201

When, using your favourite web browser, you connect to a site and
the browser starts downloading pages and images, it is holding an
on going dialog with a web server running on the remote computer.
Irrespective of the type of computer you have connected to, the web
server and web browser speak the same language.

When you request a URL, the browser opens a connection to the server
indicated in the URL, sends a request for the file, receives a reply, and
then displays the contents of the reply for you.

The Hypertext Transfer Protocol (HTTP) is the language that is used
to enable the web browser and the web server to talk to each other so
that your request (“fetch and display a URL”) can be completed.

The short conversation between the browser and the server is con-
ducted using the International Standards Organisation (ISO) Latin-1
alphabet and is human readable, with carriage return/line feed pairs
used to separate lines. It normally consists of two phases, the re-
quest phase from the browser, followed by the response phase from
the server.

http://www.sci.usq.edu.au/courses/CSC2406/semester2/resources/rfc2616.pdf

188 Chapter 7 HyperText Transfer Protocol

Example 7.1: A simple and informative way to learn about the
HTTP is to connect to an HTTP server using the program telnet

and talk to the server directly. The following assumes you are
using a Unix system but any system with a telnet application1

that allows you to specify the port will work.

To fetch the URL

htttp://www.sci.usq.edu.au/index.html

type the following at the command prompt

telnet www.sci.usq.edu.au 80

This command directs telnet to connect to www.sci.usq.edu.au

using the HTTP port 80.

Then type the following request lines exactly, as they are case
sensitive. The string <ret> represents a return or the Enter key.

GET /index.html HTTP/1.1<ret>

Host: www.sci.usq.edu.au<ret>

<ret>

Do not forget that last return.

The server should send you back the document.

An example of connecting to a web server and requesting a doc-
ument follows.

>> telnet www.sci.usq.edu.au 80
Trying 139.86.138.50...
Connected to www.sci.usq.edu.au.
Escape character is ’^]’.
GET /index.html HTTP/1.1
Host: www.sci.usq.edu.au

HTTP/1.1 200 OK
Date: Wed, 04 Feb 2009 05:08:17 GMT
Server: Apache/2.2.8 (Unix)
Last-Modified: Fri, 11 Feb 2005 03:10:10 GMT
ETag: "13-1337-3efcda2df2880"
Accept-Ranges: bytes
Content-Length: 4919
Content-Type: text/html

<html>
<head>
<title>USQ Maths & Computing Home Page</title>
...
(The rest of the document follows)
...
</body>
</html>

1 PuTTy is a telnet and ssh client for Windows

c© USQ, June 12, 2012

7.1 Request Phase 189

After the requested document is received the connection remains
open for further requests. The connection can be terminated by
exiting from telnet2

Exercise 7.2: Connect to your personal web server3 using telnet

and request the text file /welcome.txt

After connecting via telnet, type the commands

GET /welcome.txt HTTP/1.1<ret>

Host: localhost<ret>

<ret>

What is the response from your web server?

Exercise 7.3: Repeat Example 7.1, but this time use the request

GET /index.html HTTP/1.0<ret>

<ret>

How is this response different?4

The conversation between client and server is summarised in the Table
7.1.

7.1 Request Phase

The request phase consists of the request line followed by an optional
request header. The request line consists of the request method, the
path part of the URL requested, and the HTTP version number. The
request line is case sensitive.

If you requested the URL http://www.sci.usq.edu.au/home.html

the request line would be the following (assuming the request method
GET is being used)

GET /home.html HTTP/1.1

After the request line comes the request header, containing any num-
ber of header fields. These fields are mostly informational, and all
are optional, except the Host request header field. The Host request

2 The usual escape character is ^], that is the]-key depressed while the control-key is
held down.

3 If your web server has been installed on your own machine then its address will be
the name you gave your machine when you installed the operating system. If you are
running Linux then it will be 127.0.0.1 or localhost.localdomain. If neither work,
then look for the name of your machine in the file /etc/HOSTNAME.

If nothing seems to work check that you have started your web server!
4 Using HTTP/1.1, the server keeps the connection open after it has sent the requested

document. The default action in HTTP/1.0 was to close the connection after every
request. With the increase in http requests this placed a high overhead on the Internet
as every request had to renegotiate the connection. To reduce the connecting overhead
the default behaviour was changed. Servers may not conform to this default behaviour
and still close the connection after the requested document has been sent. See the
request header Connection on how to force persistent connections.

c© USQ, June 12, 2012

190 Chapter 7 HyperText Transfer Protocol

Request Line Contains the Request Method and the
document path that has been requested

Client Request Request Headers Information for the server that can
modify the request.

Request Data Depending on the Method this could be
empty, or could be the contents of a file
or data from a forms page

Response Line Contains the Status Code for the re-
sponse.

Server Response Response Headers Information for the client that can tell
it (among other things) the length of
the document to follow.

Response Data Depending on the request method and
response status code the document
would be sent at this stage

Table 7.1: Summary of the conversation between the web client and the web server.

header field must accompany all HTTP/1.1 requests. This field spec-
ifies the Internet host (and optionally the port number) of the server
containing the resource requested5.

Note The request header must be terminated with a blank line

7.1.1 The Request Method

The request method specifies what action is required of the server.
The most commonly used request methods are GET, POST, HEAD, and
PUT. The request line is case sensitive so the request methods must be
specified in uppercase.

Common request methods (This list is not complete, see RFC2616, in
the course resources directory, for the complete list of methods):

GET Retrieve the resource as identified by the requested URL. If the
requested URL refers to a server script, then the server returns
the data produced by the script. If the request URL refers to a
file then the server returns the file.

HEAD Only retrieve the header information of the resource identified by
the requested URL. The server will not send the resource itself.

POST One of the main functions of the POST method is to send data
entered on a form page (see Module 9) to a process controlled by
the server. The server will return the output from the process.

5 The Host field was introduced to allow virtual sites to be created. When the server
accepts a connection from a web client it does not know the name of the machine
the client thinks it has connected to. This meant that only one web site could be
maintained on any machine. By including the Host header name the server now knows
which site you wanted. This means that any number of web sites can be maintained
on one machine by one server.

c© USQ, June 12, 2012

7.1 Request Phase 191

PUT The PUT method allows the browser to request that the enclosed
data be stored on the server under the supplied request URL.
This method is used to publish resources on a server.

DELETE This method requests that the server delete the resource identi-
fied by the request URL.

Exercise 7.4: Connect to your own server and use the GET method
to request the file /welcome.txt.

Now use the HEAD method. For example

HEAD /welcome.txt HTTP/1.1<cr>

Host: your_server_machine_name:port<cr>

<cr>

What is the difference between the two methods? What could
be the purpose of the HEAD method?

7.1.2 The Request Header

Following the request-line are the optional request header fields. These
fields allow the client to pass additional information to the server. The
additional information can be used as request modifiers. The request
headers have varying uses and importance depending on the request
method used.

Below are some of the request header fields that can be specified by
the browser. This list is not necessarily complete and for a fuller
explanation (thought not necessarily more informative) of the meaning
of each header see RFC2616, in the course resources directory.

Accept The client can use this header to specify a list of acceptable media
types. Multiple lines of this type are allowed. The Accept field
is specified as a MIME type, and can use an asterisk as a wild
card.

For example, if a browser is willing to accept plain text docu-
ments, html documents, and only GIF and JPEG images the
request header would contain the following lines

Accept: text/plain

Accept: text/html

Accept: image/gif

Accept: image/jpg

The browser is also allowed to qualify its acceptance with a qual-
ity value. The q value ranges from 0.0, meaning “least preferred”
to 1.0 meaning “most preferred”. So a request header telling the
server that the audio format most preferred is Microsoft’s wav

format, somewhat preferred is the AIFF sound format and all
other formats are least preferred

Accept: audio/x-aiff; q=0.5

Accept: audio/x-wav; q=1.0

c© USQ, June 12, 2012

192 Chapter 7 HyperText Transfer Protocol

Accept: audio/*; q=0.1

If the server has the same sound document in multiple formats it
can send the preferred audio format of the requesting browser.

If no Accept header field is present, then it is assumed that the
client accepts all media types. If an Accept header field is present,
and if the server cannot send a response which is acceptable, then
the server should send a 406 (not acceptable) status code (see
§7.2.1).

Accept-Charset This header can be used to specify the list of character sets ac-
ceptable to the client. The ISO 8859-1 (Latin-1) character set
is assumed to be acceptable to all clients. Quality values can be
employed to list preferred character sets.

Accept-Encoding Restricts the content encoding acceptable to the client. That is
the compression method(s) that the client will accept.

This field allows resources to be compressed without losing the
underlying mime type.

Accept-Language Language(s) acceptable to the client.

Authorization Used in various authorisation/verification schemes. A browser
that wishes to authenticate itself with a server (usually, but not
necessarily, after receiving a 401 status code, see Table 7.4) may
do so by including an Authorization request-header field with the
request.

See Module 12 on authorisation.

Content-length This field specifies the length, in bytes, of the data that will follow
the request headers. This is used with POST and PUT methods.
This field is mandatory with both these methods.

Cookie This field contains all the matching magic cookies that the browser
has stored. See the Module 10 on how to use cookies.

Strictly speaking this is not part of the HTTP/1.1 protocol but
originally a Netscape Communications Corp. extension. It has
since been published as RFC2109 (see the course resource direc-
tory).

Host This field specifies the Internet host and port number of the re-
source being requested. It is obtained from the URL given by the
user. A client must include a Host header field in all HTTP/1.1
request messages. This is the only mandatory field. If it is miss-
ing the server should respond with a 400 Bad request status code
(see Table 7.4).

If-Modified-Since Return the resource only if it has been modified since the date
specified. If the document has not been modified the server re-
turns a 304 Not Modified status code (see Table 7.3).

For efficiency browsers cache documents locally. If a local copy
exists the local copy of a document will be displayed, but the
server needs to be queried to see if the document has changed. If

c© USQ, June 12, 2012

7.1 Request Phase 193

it has changed then a new copy must be obtained from the server.
This field can be used to request modified documents only.

All times and dates in header fields are specified in Greenwich
Mean Time (GMT), also known as Universal Time (UT).

Range If the client has a partial copy of the resource, the Range field
can be used to retrieve the missing part. For example

Range: bytes=100-500

If the Range field is used with a conditional GET (If-Modified-
Since etc.) and the document has been modified the GET fails.

If-Range If the client has a partial copy of the resource, this field can
be used to retrieve the missing part. If the resource has been
modified since the date specified the entire resource will be sent.

The range is specified in bytes.

If-Range: bytes=100-500, Sat, 29 Jan 2000

All times and dates in header fields are specified in Greenwich
Mean Time (GMT).

If-Unmodified-Since Return the resource only if it has not been modified since the
date specified.

All times and dates in header fields are specified in Greenwich
Mean Time (GMT).

Exercise 7.5: Using telnet request a document from your server
and use the header field Range to specify a range in bytes.

For example

GET /index.html HTTP/1.1<ret>

Host: your_server_machine_name:port<ret>

Range: bytes=5-105<ret>

<ret>

What is the response of the server? Compare the servers response
without the Range header. Apart from the partially sent resource
what else is different in the server’s response?

The request header fields fall into two categories informational or mod-
ifying. The informational fields send information to the server that it
can choose to act on or not. The modifying fields modify the response
of the server to the request method.

The HTTP/1.1 specifies only one field as mandatory in the request
headers, that is the Host field. The host field contains the machine
name (and optional port number) contained in the request URL. This
field allows the use of virtual hosts. Virtual hosts allow a machine with
only one IP address to have multiple domain names and therefore can
appear as different web sites. An example of virtual hosts are the
two web sites www.sci.usq.edu.au and jamsb.austms.org.au. The
sites have completely different domain names but the web server, the
machine and IP address are the same. The host field allows the server

c© USQ, June 12, 2012

194 Chapter 7 HyperText Transfer Protocol

to identify which site you wish to communicate with and therefore
which document tree you can access.

7.1.3 The Request Data

After the request header and a blank line, the client has the option of
sending data, if it has made a POST or PUT request. There is no restric-
tion on the format or type of data, only that it be Content-length

bytes long.

If the client sent a GET, HEAD, or DELETE request, there is nothing more
to send. At this point the client has finished the request and waits for
the response from the server.

7.2 Response Phase

After the request has been sent by the client it is the response phase
of the server. It sends back to the client the response-line followed by
the optional response headers, ultimately followed by the data, if any,
requested.

The response-line consists of the HTTP version, a three digit numer-
ical status code, and a text explanation of the status code.

7.2.1 Response Status Codes

The status code is a 3 digit integer that the server sends. It specifies
the result of the attempt to understand and satisfy the browsers re-
quest. A reason phrase is defined for each status code and returned
with the code. The status code is intended for machine interpretation
while the reason phrase is intended for humans. Though in some (if
not all) instances the reason phrase is as opaque as the status code!

The first digit of the status code defines the type of response. The
last two digits do not have any categorisation role. There are 5 values
for the first digit:

1xx Informational Request received, and continuing to process.

2xx Success The action was successfully received, understood, and accepted.

3xx Redirection Further action on the part of the browser must be taken in order
to complete the request.

4xx Client Error The request contains bad syntax or cannot be fulfilled.

5xx Server Error The server failed to fulfil an apparently valid request.

Success Codes 2xx

This class of status code indicates that the client’s request was suc-
cessfully received, understood, and accepted.

Exercise 7.6: Using telnet repeat exercise 7.2. Identify the re-
sponse header from the server.

c© USQ, June 12, 2012

7.2 Response Phase 195

Code Text Meaning

200 OK The request has succeeded.
201 Created The request has been fulfilled and resulted

in a new resource being created. The result
of a successful PUT request.

202 Accepted The request has been accepted for process-
ing, but the processing has not been com-
pleted.

203 Non-Authoritative
Information

The information returned in the header is
not the definitive or authoritative set avail-
able.

204 No Content The server has fulfilled the request but
there is no new information to send back.
The web browser should not change the
current document view.

205 Reset Content The server has fulfilled the request and the
web client should reset the document. This
response is primarily intended to allow a
form to be cleared so that the user can eas-
ily initiate another input action.

206 Partial Content The server has fulfilled the partial GET re-
quest for the resource. The initiating re-
quest must have included a Range header
field indicating the desired range.

Table 7.2: Success codes 2xx returned by the server

Exercise 7.7: Using telnet request a document from your server.
One of the header fields returned by the server with the document
is the Last-Modified date. The date the document was last
modified. This date, like all HTTP dates is in Greenwich Mean
Time (GMT).

Now request the document and add the If-Unmodified-Since

field to your request.

What is the servers response when the If-Unmodified-Since

date is the same as the Last-Modified date of the document? If
it is earlier? If it is later?

What are the server codes returned?

(The Linux commands date -u will return the current date in
Universal Time, UT which is the same as GMT)

Redirection Codes 3xx

This class of status codes indicate that further action needs to be taken
by the browser in order to fulfil the request. That is the URLs exist
but have moved. The server uses the Location header field to specify
where the document can now be found.

Table 7.3 lists some of the redirection codes 3xx, returned by the server

c© USQ, June 12, 2012

196 Chapter 7 HyperText Transfer Protocol

Code Text Meaning

300 Multiple Choices The requested resource corresponds to any
one of a set of representations, each with
its own specific location. Information is
provided so that the user (or web client
automatically) can select a preferred rep-
resentation and redirect its request to that
location.

301 Moved Permanently The requested resource has been assigned a
new permanent URL and any future refer-
ences to this resource should be done using
one of the returned URLs.

302 Moved Temporarily The requested resource can be found tem-
porarily at a different URL.

303 See Other The response to the request can be found
under a different URL and should be re-
trieved using a GET method. This code
exists primarily to allow the output of a
POST activated script to redirect the web
client to a selected resource.

304 Not Modified If the client has performed a conditional
GET request and access is allowed, but
the document has not been modified, the
server responds with this status code.

Table 7.3: Some of the redirection codes 3xx, returned by the server

Exercise 7.8:

Using a browser request the directory

http://www.sci.usq.edu.au/courses

Now using telnet request the directory again using the command

GET /courses HTTP/1.1<ret>

Host: www.sci.usq.edu.au<ret>

<ret>

What is the server response code? Explain the response from the
server.

Now request the directory, with

GET /courses/ HTTP/1.1<ret>

Host: www.sci.usq.edu.au<ret>

<ret>

Note: The requested resource is now /courses/.

Explain the steps the browser must have gone through to down-
load the document.

Explain why when accessing directories the complete directory
name courses/ should always be used.

c© USQ, June 12, 2012

7.2 Response Phase 197

Client Error Codes 4xx

This class of error codes are intended for the cases when the web client
seems to have made an error. A client error can be due to syntax error
so that the request could not be understood by the server (Status 400),
or due to an authorisation error (Status 401). That is, to retrieve the
document the client needs to include authentication headers.

Code Text Meaning

400 Bad Request The request could not be understood by
the server.

401 Unauthorized The request requires user authentication.
403 Forbidden The server understood the request, but is

refusing to fulfil it.
404 Not Found The server has not found anything match-

ing the requested URL.
405 Method Not

Allowed
The method specified in the request line is
not allowed for the requested resource.

406 Not Acceptable The data to be returned to the client would
be unacceptable. This decision by the
server is based on the accept headers sent
by the client.

410 Gone The requested resource is no longer avail-
able at the server and no forwarding ad-
dress is known.

411 Length Required The server refuses to accept the request
without a defined Content-Length. This
would be sent if a POST method was used
in the request and no Content-Length was
supplied in the header fields.

412 Precondition Failed The precondition given in one or more of
the request-header fields evaluated to false
when it was tested on the server.

Table 7.4: Some of the client error codes 4xx returned by the Server

Table 7.4 lists some of the client error codes 4xx, returned by the
server

Exercise 7.9: Using telnet request a document from the server,
without sending the Host field. For example,

GET /index.html HTTP/1.1<ret>

<ret>

What was the server’s response.

Exercise 7.10: Using a browser download the document

http://www.sci.usq.edu.au/dept/

Note the response from the browser/server.

Now download the same document using telnet.

c© USQ, June 12, 2012

198 Chapter 7 HyperText Transfer Protocol

What was the response of the browser when it recognised the
server status code?

Exercise 7.11: Using telnet download a non-existent document
from your server.

What is the response?

Download the same non-existent document using a web browser.

Server Error Codes 5xx

These error codes are intended for the cases in which the server is aware
that it has erred or is incapable of performing the request. Table 7.5
lists some of the server error codes 5xx, returned by the server

Code Text Meaning

500 Internal Server Error The server encountered an unexpected con-
dition which prevented it from fulfilling the
request.

501 Not Implemented The server does not support the function-
ality required to fulfil the request. This is
the appropriate response when the server
does not recognise the request method and
is not capable of supporting it for any re-
source.

503 Service Unavailable The server is currently unable to handle
the request. This condition is temporary.
Possible causes for the condition are server
overload or server maintenance

505 HTTP Version
Not Supported

The server does not support, or refuses to
support, the HTTP protocol version that
was used in the request message.

Table 7.5: Some of the server error codes 5xx, returned by the Server

Exercise 7.12: Using telnet request a document from your server
using an unknown method. For example

XXX /index.html HTTP/1.0<ret>

What is the server’s response.

Exercise 7.13: Using telnet request a document from your server
using an unknown HTTP version. For example

XXX /index.html HTTP/2.0<ret>

Host: your-server-name<ret>

<ret>

What is the server’s response. Is the server’s response the correct
response?

c© USQ, June 12, 2012

7.2 Response Phase 199

7.2.2 The Response Header

After the status line, the server sends a response header. The header
contains information that applies to the server itself and information
that applies to the document to follow. Like the request header, much
of the information in the response header is optional.

Some of the server response headers are:

Server The name and version of the server.

Date The current date and time (GMT).

Expires The date at which the document expires.

Allow The requests that the requesting user can issue. For example

Allow: GET, POST

Last-Modified Date at which the document was last modified (GMT).

Location The location of the document in a redirection response.

Pragma Used to give hints to the browser or proxy server, such as

Pragma: no-cache

That is, don’t cache the document locally.

Content-Length Length, in bytes, of the data to follow. For example,

Content-Length: 12456

Content-Base Can be used to specify the base URL for resolving relative URLs
within the document to follow. If it is absent the URL of the
document to follow is used as the base URL.

Content-Type MIME media-type of the data to follow. For example,

Content-Type: text/html.

(See Module 8, on MIME typing)

Content-Range When the server sends only part of a document this header spec-
ifies where in the full document the partial document should be
inserted. It also indicates the total size of the full document.

Content-Encoding When present, its value indicates what additional content codings
have been applied to the document to follow, and thus what
decoding mechanisms must be applied by the browser to obtain
the MIME media-type referenced by the Content-Type header
field.

Content-Encoding is primarily used to allow a document to be
compressed without losing the identity of its underlying MIME
media type.

Content-Language Describes the natural language(s) of the intended audience for
the following document.

WWW-authenticate This header field must be included in 401 (Unauthorized) re-
sponse messages. The field value consists of at least one chal-
lenge that indicates the authentication or validation scheme(s)

c© USQ, June 12, 2012

200 Chapter 7 HyperText Transfer Protocol

(and parameters) that need to be used to get access to the re-
quested document.

Set-Cookie Header field used to pass a Cookie to the browser. (See §10.7.5
on using cookies).

The most important header field which is not optional, is the Content-Type
field. This field is essential, without it, the browser will not know how
to display the document to be sent.

Header fields such as Server, Date, Last-Modified, and Expires are in-
formational. The last two can be used by smart browsers or proxies
to cache documents locally to be reused without fetching them over
the network. All dates used by HTTP are in Greenwich Mean Time
(GMT, also known as UT, Universal Time and UST, Universal Stan-
dard Time).

The Location header is used in conjunction with the redirection mes-
sages 301 and 302. Both of these status codes tell the browser that
the requested document is located elsewhere. When the response line
contains a 301 or 302 status code then the Location header is added
and contains the URL of the new location of the document.

The Content-Length gives the size, in bytes, of the document to fol-
low.

Exercise 7.14: Repeat exercises 7.4,7.5, 7.8, 7.10 using telnet,
and this time study the server header fields and how they change
depending on the request.

7.2.3 The Response Data

Last, but not least, the server sends the document itself!

After the last header field the server sends a blank line. If the browser
requested just the header information using the HEAD request method,
the server has fulfilled the request. If the connection is not to be kept
alive the server closes the connection6

Under the the HTTP/1.1 the default behaviour is for the server to keep
the connection alive and wait for a new request from the browser. If
the request is slow in coming the open connection will time out and
be closed by the server.

The HTTP doesn’t require special treatment for different data types,
it only recognises a binary data stream. Neither does the protocol put
a limit on the size of the documents sent. Anything from the 12-byte
message Hello World! to multi-megabyte files are equally acceptable.

7.3 Questions

Short Answer Questions

Q. 7.15: What are the two phases of an HTTP request?

6 The browser initiates the connection but it is the server that decides to close the
connection!

c© USQ, June 12, 2012

7.4 Further Reading and References 201

Q. 7.16: What is one of the differences between HTTP/1.1 and HTTP/1.0?

Q. 7.17: What are the 3 parts of the Response Phase?

Q. 7.18: What are the 3 parts of the Request Phase?

Q. 7.19: What is the information sent in the request line?

Q. 7.20: Describe the request method GET.

Q. 7.21: What is the purpose of the HEAD method?

Q. 7.22: What is the purpose of the request header?

Q. 7.23: HTTP/1.1 has one mandatory header field, what is it?
Why is it a mandatory header?

Q. 7.24: What is the response from the server to a HEAD request?

Q. 7.25: Why would a client send a HEAD request?

Q. 7.26: What is the status code? Who sends it? Why is it sent?

Q. 7.27: What is the meaning of the first digit in a status code?

Q. 7.28: How are redirection codes interpreted by the client?

Q. 7.29: What is the response header?

Q. 7.30: Why is the Content-Type header so important?

Q. 7.31: In what format is the actual document data sent by the
server?

7.4 Further Reading and References

• The obvious place to start for more information on the Hyper-
text Transfer Protocol is the Request For Comment document
that defines the HTTP/1.1. The document is RFC2616 from the
Network Working Group. A copy of RFC2616 can be found in
the course resources directory.

• As always the main site for all information on current and future
web standards is the World Wide Web Consortium at

http://www.w3c.org/

c© 2002 Leigh Brookshaw and Richard Watson
Department of Mathematics and Computing, USQ.

(This file created: June 12, 2012)

c© USQ, June 12, 2012

http://www.sci.usq.edu.au/courses/CSC2406/semester2/resources/rfc2616.pdf
http://www.sci.usq.edu.au/courses/CSC2406/semester2/resources/
http://www.w3c.org/

202 Chapter 7 HyperText Transfer Protocol

c© USQ, June 12, 2012

Chapter 8 Multipurpose Internet Mail Extensions

Multipurpose Internet Mail Extensions or MIME was developed to al-
low multimedia files to be sent using electronic mail. This module will
show how the existing MIME system was incorporated into the web.

Chapter contents
8.1 MIME types 203

8.1.1 Base64 Encoding 203
8.2 Content-type Header 205
8.3 Servers and MIME typing 206
8.4 Clients and MIME typing 207
8.5 Questions 208
8.6 Further Reading and References 209

8.1 MIME types

Historically electronic mail was developed to send text messages using
the Internet. The protocol (SMTP: Simple Mail Transfer Protocol)
was designed to accept only the 96 printable characters on an En-
glish/US keyboard. This made it impossible to send binary files via
email unless they where encoded. A number of encoding schemes have
been developed that allow binary files to be transferred, for Unix there
is uuencode/uudecode, for the Macintosh there is binhex. All these
schemes have one thing in common, they encode the bytes of a binary
file to produce a file that contains only the (at most) 96 printable
characters of the ASCII character set.

8.1.1 Base64 Encoding

The encoding that has become standard with electronic mail is Base64.
This scheme encodes any binary file into a file that contains only
65 characters (64 characters and the padding character “=”). The
characters (in order) are

ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz

0123456789+/

= (padding)

any character found in a Base64 encoded file that is not one of the 65
characters above are ignored.

To convert any file into a file containing only the 64 characters above,
Base64 converts each 3 bytes of the input stream (reading left to right)
into 4 output bytes. To do this the encoder splits the 24-bit input

204 Chapter 8 Multipurpose Internet Mail Extensions

group into 4 6-bit groups. Each 6-bit group represents one character
from the Base64 alphabet above. Using the characters above and
starting at zero the characters are numbered sequentially.

A full encoded 24-bits are always completed at the end of a body.
When fewer than 24 input bits are available in an input group, zero
bits are added (on the right) to form an integral number of 6-bit
groups. Padding at the end of the data is performed using the “=”
character.

Since all Base64 input is in 8 bit bytes, only the following cases at the
end of the data stream can arise:

(a) the final block of input is 24 bits, therefore the final block of
encoded output will be 4 characters (with no “=” padding).

(b) the final block of input is exactly 8 bits; here, zero bits are ap-
pended to produce a total of 12 bits. This final block is encoded
as two characters followed by two ”=” padding characters

(c) the final block of input is exactly 16 bits; here, zero bits are
appended to produce a total of 18 bits. This final block is en-
coded output as three characters followed by one ”=” padding
character.

Example 8.1: To convert the text “base64 ” into Base64 encoding,
from left to right split the characters into groups of 24 bits. The
ASCII encoding of the characters and the binary equivalents are
shown below

First Group
b a s

Decimal 98 97 115
Hexadecimal 62 61 73
Binary 01100010 01100001 01110011

Second Group
e 6 4

Decimal 101 54 52
Hexadecimal 65 36 34
Binary 01100101 00110110 00110100

Split the bytes into 6 bit words

First Group
6-bit 011000 100110 000101 110011
Decimal 24 38 5 51
Base64 Y m F z

Second Group
6-bit 011001 010011 011000 110100
Decimal 25 19 24 52
Base64 Z T Y 0

So the characters “base64” become “YmFzZTY0”.

c© USQ, June 12, 2012

8.2 Content-type Header 205

Exercise 8.2: Under Linux there are a number of base64 utilities.
If the package MetaMail is installed then you will have access to
the Base64 encoding filter program mimencode. If not you can
use the supplied code that can be found on the on the web site.

Using a Base64 program try the example above.

Using a Base64 program encode different length strings. When
do the “=” characters appear at the end of the encoded string
and why?

8.2 Content-type Header

It should be clear from the brief outline of Base64 encoding above,
that unlike some encoding schemes Base64 does not encode any in-
formation about the encoded file into the output stream. This means
that information must be sent along with the encoded file that de-
scribes the file’s content. The MIME defines header fields to be added
to mail messages that have encoded multimedia files attached. These
header fields describe the contents of the encoded attachments.

The MIME header that describes an encoded document’s contents,
and also the header used by web servers and web clients is the content
type header:

Content-Type: type/subtype

The content type header describes the contents of the file to follow by
referring to a standardised list of document types and subtypes.

The standard media document types for discrete documents are text,
image, audio, video, application. There is also a multipart type that
is used to describe a document that is made up of multiple documents
of the same or different formats.

The subtype field specifies the format of the media document. That
is, what sort of text file the document is, or what audio format the
document is in. For example, a HTML document would have the con-
tent type of text/html, a text document in HTML format. A quick-
time movie has the content type video/quicktime, a video document
in Quicktime format.

Table 8.1 lists some of the more common MIME types.

You will notice from the table that some of the subtypes begin with
the prefix x-. This prefix means that the subtype is experimental and
has yet to be officially accepted1.

MIME types and subtypes can be freely added by anyone, but until
they are officially recognised they will not generally be known beyond
the site where they are being used.

1 See RFC2048, the fourth (of five) MIME RFC’s. This one is on registration procedures
of MIME types. Only look at it if you are really keen.

c© USQ, June 12, 2012

206 Chapter 8 Multipurpose Internet Mail Extensions

Type/Subtype Extensions Description

application/mac-binhex40 hqx Macintosh Binhex 4.0 format
application/msword doc Microsoft Word Format
application/octet-stream bin dms lha

lzh exe class
Raw binary

application/postscript ai eps ps Adobe Postscipt
application/pdf pdf Adobe Portable Document

Format
application/x-tar tar Unix tar archive
application/zip zip PKZip file compression for-

mat
application/x-gzip gz GNUzip compression format
application/x-httpd-php php PHP scripting language
audio/basic snd au Sun Microsystem’s audio for-

mat
audio/x-wav wav Microsoft’s ’wav’ format
audio/x-realaudio ra Realaudio Format
image/gif gif Compuserve GIF format
image/jpeg jpeg jpg JPEG format
image/png png PNG format
text/html html htm Hypertext Markup Language
text/plain plain text
text/css css Style Sheet
video/mpeg mpeg mpg MPEG movie format
video/quicktime mov Macintosh qicktime format
video/x-msvideo avi Microsoft video format

Table 8.1: Some common MIME types with their common file extensions.

8.3 Servers and MIME typing

When the server sends a requested document to the requesting client it
precedes the document with a header (see §7.2.2) that includes (among
other things) the MIME type of the document to be sent.

To be able to send the MIME type of the document the server must
know what type of document has been requested. How does the server
know the MIME type? There are a number of simple techniques that
the server can employ to discern the document MIME type. To send
a document the server must open it on the local system and read it.
An obvious way for the server to learn the MIME type is to recognise
it from the information in the file. Unfortunately there are many file
types and new ones being created all the time. For every new file type
the server would have to be rebuilt and code added to the server’s
parser or interpreter. A cumbersome procedure at best2. A simpler
method would be if the server could recognise the MIME type from
the file’s URL.

2 Apache has an optional module called “mime-magic” that can be built into the server.
This module tries to match the first few bytes of a file against a table to find a file’s
MIME type.

c© USQ, June 12, 2012

8.4 Clients and MIME typing 207

File Type Extensions

For many years, operating systems (but not all) have been incorpo-
rating file type extensions in the file name. This was so the user could
sort his or her files and recognise file types directly from the name.
The standard that developed was to add a suffix to the file name of
(at most) three letters to identify the file type. The suffix is delimited
by a period. For example a text file would be recognised by the suffix
.txt, a Compuserve GIF file by the suffix .gif, an Adobe postscript
file with .ps. Originally file extensions were used so that people could
recognise at a glance what was in a file without having to open the
file. The web server behaves in exactly the same way. It uses the file
extension to recognise the MIME type of the file.

To recognise the MIME type from the file extension, a server has a
look up table. For each MIME type there is a list of the file extensions
commonly used for that MIME type. The lookup table for the Apache
server is loaded at startup from the file mime.types and can be found
in your Apache configuration directory ~/CSC2406/conf.

Exercise 8.3: Study the file ~/CSC2406/conf/mime.types used by
your apache server to resolve the MIME types of files.

8.4 Clients and MIME typing

When a client requests a document, it can preface the request with
a list of preferred document types. If the server has several choices
available to it for the requested document it can preferentially pick the
format preferred by the client (see §7.1.2 on the HTTP header field
Accept).

After the client has received a requested document it needs to make a
decision about what to do with the document. The decision on how to
dispose of the document depends on what sort of document has been
received. By looking at the MIME type of the requested document
the client can decide on the appropriate action.

Every browser has a number of document types that it can display
natively, i.e. in its own windows. All browsers can display plain text;
text/plain, and hypertext; text/html. Graphical browsers can display
Compuserve GIF images; image/gif, JPEG format; image/jpeg, and
some can display the PNG format; image/png. However there will
always be formats that browsers can not handle, to deal with these
formats the browser normally has a number of options

• Launch an external application and pass the job of interpreting
the unknown format to the application. Such applications are
called Helper Applications.

• Load an external module known as a plug-in to extend the browsers
capabilities. The idea behind plug-ins is to keep the browser small
(something that seems to be impossible). The capabilities of the
plug-in are not required all the time only when a document of
the correct MIME type is downloaded.

c© USQ, June 12, 2012

208 Chapter 8 Multipurpose Internet Mail Extensions

• Write the document to disk for processing later.

• Ask the user for help.

• Ignore the document.

Browsers make it easy to extend their capabilities to accommodate
new document types.

Example 8.4: Suppose you have written a wonderful 3D visualisa-
tion application. The native files it produces can only be viewed
by your program. How do you setup your server and client so that
browsers can use your program as an external helper application
automatically?

Client Side: Decide on a MIME type for your visualisation files, such as
application/x-my3d
(Note this is an experimental MIME type!)

Add this mime type to your web browser and tell it the name
of the helper application.

Server Side: Your wonderful 3D visualisation application produces files
with the file extension 3dv. The server needs to know which
mime file type is represented by which local file extension.
To do this the server has a table that maps the local file
extension to the appropriate file type. The servers mime-
type table needs to be modified so that the file extension
3dv has mime type application/x-my3d.

Now when the client requests the file image.3dv the server knows
that this file has mime type application/x-my3d which will be
incorporated into the header information by the server as

Content-type: application/x-my3d

When the client parses the server header information it will know
to launch the helper application specified for this mime type.

Exercise 8.5: Set up your server and client to be able to recognise
your personal file types. Create a text file using your favourite
editor. Give it a unique file extension, for example mft. Place
the file into the server document tree. Decide on a MIME type
for your new file format, for example x-myfiletype. Edit the
Apache mime.types file (found in the ~/CSC2406/conf directory)
to include your new file extension and mime type. Now set up
your client to launch a helper application when the server noti-
fies the client of your new MIME type. Use a simple text edi-
tor/reader as the helper application.

Now create a page that has a hyper-link to your new file. When
the file is requested from your client the helper application should
be launched to view your new file.

8.5 Questions

Short Answer Questions

c© USQ, June 12, 2012

8.6 Further Reading and References 209

Q. 8.6: Why was base64 encoding developed?

Q. 8.7: Why is the common mail encoding scheme called base64 ?

Q. 8.8: What is the ”=” character used for in base64 encoding?

Q. 8.9: Explain, in broad terms, what information the MIME header
Content-type contains.

Q. 8.10: Why does the content type field require a type and subtype?

Q. 8.11: How is the file extension used in MIME typing?

Q. 8.12: Why does the Web server need to send the MIME type of
the document to the client?

Q. 8.13: What are Helper applications?

Q. 8.14: What are plug-ins?

Q. 8.15: How are new MIME types defined for the server?

Q. 8.16: What needs to be changed or added to the server and client
when a new MIME type is created?

8.6 Further Reading and References

The following RFC’s are uncommonly dull, even by the standard of
RFC’s, be warned!

• The Apache server mime types can be found in the file

~/CSC2406/httpd/conf/mime.types

in your distribution of the Apache server.

• www.hunnysoft.com/mime/ MIME information page

• RFC2045 Multipurpose Internet Mail Extensions (MIME) Part
One: Format of Internet Message Bodies

• RFC2046 Multipurpose Internet Mail Extensions (MIME) Part
Two: Media Types

• RFC2047 Multipurpose Internet Mail Extensions (MIME) Part
Three: Message Header Extensions for Non-ASCII Text

• RFC2048 Multipurpose Internet Mail Extensions (MIME) Part
Four: Registration Procedures

• RFC2049 Multipurpose Internet Mail Extensions (MIME) Part
Five: Conformance Criteria and Examples

c©2009 Leigh Brookshaw
Department of Mathematics and Computing, USQ

c© USQ, June 12, 2012

http://www.hunnysoft.com/mime/

210 Chapter 8 Multipurpose Internet Mail Extensions

c© USQ, June 12, 2012

Chapter 9 HTML Forms

The FORM tag specifies a fill-out form within an HTML document. The
tag provides a method of requesting information from a web client.

Chapter contents
9.1 The Form element 211
9.2 Form Input elements 212

9.2.1 <INPUT TYPE="TEXT"...> 212
9.2.2 <INPUT TYPE="PASSWORD"...> 213
9.2.3 <INPUT TYPE="CHECKBOX"...> 213
9.2.4 <INPUT TYPE="RADIO"...> 214
9.2.5 <INPUT TYPE="SUBMIT"...> 215
9.2.6 <INPUT TYPE="IMAGE"...> 216
9.2.7 <INPUT TYPE="RESET"...> 216
9.2.8 <INPUT TYPE="FILE"...> 217
9.2.9 <INPUT TYPE="HIDDEN"...> 218

9.3 SELECT element 218
9.3.1 <OPTION...> 219

9.4 TEXTAREA element 220
9.5 Form Elements and CSS 221
9.6 Questions 221
9.7 Further Reading and References 222

9.1 The Form element

Attributes: action, method, enctype

The form tag specifies a fill out form within an HTML document. The
tag provides a method of requesting information from a web client.

Example 9.1: An example of a fill out form that requests informa-
tion from the client.

http://www.sci.usq.edu.au/courses/CSC2406/semester2/sb/examples/forms/example1.html

212 Chapter 9 HTML Forms

An HTML document can contain multiple form tags but they cannot
be nested.

Within the form container there can be specified all the standard
HTML elements plus several kinds of form fields such as single and
multi-line text fields, radio button groups, checkboxes, and menus.

The attributes of the form tag are:

action

This specifies a URL which is to somehow handle the information
entered in the form. For example, to post the information in the
form via email,

action="mailto:lec.CSC2406@usq.edu.au",

or to invoke an application via HTTP (see the CGI scripts module
10),

action="http://www.sci.usq.edu.au/register.php"

method

When the action attribute specifies an HTTP server, that is,

action="http://www.sci.usq.edu.au/staff/"

the method attribute determines which HTTP method will be
used to send the form’s contents to the server. It can be either
GET or POST, and defaults to GET. The method attribute chosen
determines how the server and the forms handling application
will receive the information entered into the form (see the CGI
scripts module 10).

enctype

This determines the mechanism used to encode the form’s con-
tents and submit it to the server. This is used when the method is
POST. It defaults to the MIME type application/x-www-form-urlencoded.
The other form of encoding is multipart/form-data which must
be specified if the input element, type="file" has been used.

9.2 Form Input elements

There are three types of data input elements that can only be found
within a form container: input, textarea, and select. The input

element can be used for a variety of form fields including single line text
fields, password fields, checkboxes, radio buttons, submit and reset
buttons, hidden fields, file upload, and image buttons. The select

element is used for single or multiple choice menus. The textarea

element is used to define multi-line text fields.

9.2.1 <INPUT TYPE="TEXT"...>

Attributes: name (required), value, size, maxlength

A single line text field whose visible size can be set using the size

attribute, e.g. size=""40" for a 40 character wide field. Users should
be able to type more than this limit with the text scrolling through the

c© USQ, June 12, 2012

9.2 Form Input elements 213

field to keep the input cursor in view. An upper limit can be enforced
on the number of characters that can be entered with the maxlength

attribute. The name attribute is used to name the field, while the
value attribute can be used to initialise the text string shown in the
field when the document is first loaded.

Example 9.2: An example of using the type="text" input element.

The HTML code

Enter Your Name:
<input type="text"

size="40"
name="user"
value="your name here" />

is rendered in the following way:

9.2.2 <INPUT TYPE="PASSWORD"...>

Attributes: name (required), value, size, maxlength

This is similar to the type="text" input element, but obscures the
input text by echoing a character like *. When entering a password
this is required to hide the text from prying eyes.

You can use size and maxlength attributes to control the visible and
maximum length exactly as the regular text fields.

Example 9.3: An example of using the type="password" input
element.

Enter Your Password:
<input type="password"

size="12"
name="pw" />

This is rendered exactly the same as the type="text" element.
See Example 9.2

9.2.3 <INPUT TYPE="CHECKBOX"...>

Attributes: name (required), value, checked

This element is used for simple Boolean fields, or for fields that can
take multiple values at the same time. The latter is represented by
several checkbox fields with the same name and different value at-
tributes. Each checked checkbox generates a separate name/value pair
in the submitted data, even if this results in duplicate names. Use the
checked attribute to initialise the checkbox to its checked state.

Example 9.4: An example of using the type="checkbox" input
element.

The HTML code

c© USQ, June 12, 2012

http://www.sci.usq.edu.au/courses/CSC2406/semester2/sb/examples/forms/example2.html
http://www.sci.usq.edu.au/courses/CSC2406/semester2/sb/examples/forms/example2.html
http://www.sci.usq.edu.au/courses/CSC2406/semester2/sb/examples/forms/example3.html

214 Chapter 9 HTML Forms

<form>
Check All applicable operating systems

<input type="checkbox" name="os"

checked="checked"
value="macintosh"/> Macintosh

<input type="checkbox" NAME="os"
checked="checked"
value="unix"/> Unix

<input type="checkbox" name="os"
value="vms"/> VMS

<input type="checkbox" name="os"
value="osf1"/> OSF/1

<input type="checkbox" name="os"
value="plan9"/> Plan9

<input type="checkbox" name="os"
value="doze"/> Windoze

<input type="checkbox" name="os"
value="dos"/> MS-DOG

</form>

is rendered in the following way:

9.2.4 <INPUT TYPE="RADIO"...>

Attributes: name (required), value (required), checked

This element is used for fields which can take a single value from a set
of alternatives (cf. checkbox). Each radio button field in the group
should be given the same name. Radio buttons require an explicit
value attribute. Only the checked radio button in the group generates
a name/value pair in the submitted data. One radio button in each
group should be initially checked using the checked attribute.

Example 9.5: An example of using the type="radio" input ele-
ment.

The HTML code

<form>
Please enter your Age:

<input type="radio" name="age"

value="12"/> 0-12

<input type="radio" name="age"

value="17"/> 13-17

c© USQ, June 12, 2012

http://www.sci.usq.edu.au/courses/CSC2406/semester2/sb/examples/forms/example4.html

9.2 Form Input elements 215

<input type="radio" name="age"
value="25"/> 18-25

<input type="radio" name="age"
value="35"
checked="checked"/> 25-35

<input type="radio" name="age"
value="45"/> 36-45

<input type="radio" name="age"
value="gt"/> greater than 45

</form>

is rendered in the following way:

9.2.5 <INPUT TYPE="SUBMIT"...>

Attributes: name, value

This element defines a button that users can click to submit the form’s
contents to the server. The button’s label is set by the value attribute.
If the name attribute is given then the submit button’s name/value
pair will be included in the submitted data. You can include several
submit buttons in the form. See type="image" for a graphical submit
button.

Example 9.6: An example of using the type="submit" input ele-
ment.

The HTML code

<form>
Check All applicable operating systems

<input type="checkbox" name="os"

checked="checked"
value="macintosh"/> Macintosh

<input type="checkbox" name="os"
checked="checked"
value="unix"/> Unix

<input type="checkbox" name="os"
value="vms"/> VMS

<input type="checkbox" name="os"
value="osf1"/> OSF/1

<input type="checkbox" name="os"
value="plan9"/> Plan9

<input type="checkbox" name="os"
value="doze"/> Windoze

c© USQ, June 12, 2012

http://www.sci.usq.edu.au/courses/CSC2406/semester2/sb/examples/forms/example5.html

216 Chapter 9 HTML Forms

<input type="checkbox" name="os"
value="dos"/> MS-DOG

<input type="submit" name="send"
value="Submit Selections"/>

</form>

is rendered in the following way:

9.2.6 <INPUT TYPE="IMAGE"...>

Attributes: name (required), src (required), align

This element is used for graphical submit buttons rendered by an
image rather than a text string. The URL for the image is specified
with the src attribute. The image alignment can be specified with
the align attribute.

The coordinates of the location clicked are passed to the server. In
the submitted data, image fields are included as two name/value pairs.
The name/value pairs are name.x=x-value and name.y=y-value. Where
name is the value of the name attribute. The x-value is measured in
pixels from the left edge of the image, and the y-value is measured
in pixels from the top edge of the image.

Note If the server takes different actions depending on the location
clicked, users of non-graphical browsers will be disadvantaged.
For this reason, this element should be used with caution, and
alternate methods should be considered first.

9.2.7 <INPUT TYPE="RESET"...>

Attributes: name, value

This element defines a button that users can click to reset form fields
to their initial state. The reset button label can be set by providing a
value attribute. Reset buttons are never sent to the server as part of
the form’s contents.

c© USQ, June 12, 2012

9.2 Form Input elements 217

Example 9.7: An example of using the type="reset" input ele-
ment.

The HTML code

<form>
<textarea cols="40" rows="4">
Please type in this textarea.
The button below will reset the
textarea back to this message!
</textarea>
<p>
<input type="reset" value="START OVER ..."/>
</p>
</form>

is rendered in the following way:

9.2.8 <INPUT TYPE="FILE"...>

Attributes: name (required), size, maxlength, accept

This element provides a means for users to attach a file to the form’s
contents. It is generally rendered by a text field and an associated
button which when clicked invokes a file browser to select a file name.
The file name can also be entered directly in the text field. Just like
the type="text" element the size attribute can be used to set the
visible width of this field in character widths. The upper limit to the
length of file names can be set using the maxlength attribute. Some
web clients support the ability to restrict the kinds of files to those
matching a comma separated list of MIME content types given with
the accept attribute e.g. accept="image/*" restricts files to images.

Note To be able to include the contents of a file with a form submission
the enctype attribute of the form must be set to enctype="multipart/form-data"

Further information can be found in RFC1867 and the HTML4.0 spec-
ification.

Example 9.8: An example of using the type="file" input element.

The HTML code

<form enctype="multipart/form-data" method="POST">
Please select your photo file

c© USQ, June 12, 2012

http://www.sci.usq.edu.au/courses/CSC2406/semester2/sb/examples/forms/example6.html
http://www.sci.usq.edu.au/courses/CSC2406/semester2/sb/examples/forms/example7.html

218 Chapter 9 HTML Forms

<input type="file" name="photo" size="40" accept="image/*">
</form>

is rendered as:

9.2.9 <INPUT TYPE="HIDDEN"...>

Attributes: name (required), value

This element is not rendered and provides a means for servers to
store state information with a form. That is, HTTP connections do
not maintain a history of previous connections, so it is difficult to carry
on a conversation when context matters. The type="hidden" can
be used to store the history of previous connections.

The name/value pair is passed back to the server with the rest of the
form data.

Note As there is no reliable way to hide the HTML that generates a
page, the type="hidden" element should not be used to embed
sensitive information you do not want the client to see.

Example 9.9: An example of using the type="hidden" input ele-
ment.

The HTML code

<form>
<input type="hidden" name="LastAction" value="delete’’>
</form>

will not be rendered but the name/value pair LastAction=delete
will be returned to the server.

Exercise 9.10: To gauge customer satisfaction, an online business
plans to place a web page on their site, that among other things
asks customers to fill out a questionare.

Using as many of the input fields listed above design a web page
that could be used for customer input.

The choice of business is up to you.

9.3 SELECT element

Attributes: (container), name (required), size, multiple

The select element is used to present a set of options to the user.
If only a single entry can be selected and no visible size has been
specified, the options are typically presented in a drop down menu.
If multiple selections are permitted or a specific visible size has been
specified then the options are presented as a list box.

c© USQ, June 12, 2012

http://www.sci.usq.edu.au/courses/CSC2406/semester2/sb/examples/forms/example8.html

9.3 SELECT element 219

The attribute name identifies the selection. The size attribute defines
the number of visible rows to be displayed when rendering the list.
The multiple attribute specifies that multiple entries can be selected
from the list. If multiple is omitted, only single selection is permitted

9.3.1 <OPTION...>

Attributes: value , selected

The option element is only valid within a select element, and spec-
ifies the menu choices.

The value attribute gives the value to be returned if this item is
selected. It is not the text to be displayed for this option; that is
specified by the text that is listed after the option tag.

If present, the selected attribute specifies that the associated menu
item will be selected when the page is first rendered. It is an error to
specify more than one selected item if the multiple selections are not
permitted.

Example 9.11: An example of using the SELECT input element with
only a single selection allowed.

The HTML code

<form>
Select one from the following:
<select name="flavour">

<option value="a"> Vanilla </option>
<option value="b"> Strawberry </option>
<option value="c"> Rum and Raisin </option>
<option value="d"> Peach and Orange </option>

</select>
</form>

is rendered as:

and when clicked on becomes

Example 9.12: An example of using the select input element with
multiple selections allowed.

The HTML code

c© USQ, June 12, 2012

http://www.sci.usq.edu.au/courses/CSC2406/semester2/sb/examples/forms/example9.html
http://www.sci.usq.edu.au/courses/CSC2406/semester2/sb/examples/forms/example9.html

220 Chapter 9 HTML Forms

<form>
Select one or more from the following:
<select name="model" size="4" multiple="multiple">

<option value="a" />Oldsmobile </option>
<option value="b" />Chevy Malibu </option>
<option value="c" />Dodge Caravan </option>
<option value="d" />Cutlass Sierra </option>
<option value="e" />Pickup Truck </option>
<option value="f" />Sunbird </option>
<option value="g" />Miata </option>

</select>
</form>

is rendered as:

9.4 TEXTAREA element

Attributes: name (required), rows (required), cols (required), wrap

This element is used to input multiline text fields. The content of
the element is restricted to text and character only. The character
set for submitted data should be ISO Latin-1, unless the server has
previously indicated that it can support alternative character sets.

The rows attribute specifies the number of visible rows, not the max-
imum number of rows. The cols attribute specifies the with that
is visible (in units of average character widths). If the user requires
more rows or columns that is visible the web client should provide
scroll bars.

Example 9.13: An example of using the textarea input element.

The HTML code

<form>
<textarea name=address rows="4" cols="40">
Please Enter Your Address Here ...
</textarea>

</form>

is rendered as:

c© USQ, June 12, 2012

http://www.sci.usq.edu.au/courses/CSC2406/semester2/sb/examples/forms/example11.html

9.5 Form Elements and CSS 221

Ex. 9.14: Expand exercise 9.10 to allow comments to be submitted
by customers through a textarea tag

Ex. 9.15: Create a simple forms page (that is, do not use any of the
form element attributes). Only include a submit button within
the form container (See section 9.2.5).

When the submit button is pressed note the URL that appears
in the Location field of the browser. Add an input text line to
the form. Again press the submit button. Again note the URL
being sent to the server. Change the form by changing the type
of input fields. Each time the submit button is pressed note the
URL sent to the server.

Explain what is happening.

What do you think the ”+” characters represent in the URL (if
there are any)?

What do you think the ”?” and ”&” characters are for?

Ex. 9.16: Repeat the exercise above but with two form containers
on the one page page. Each container should contain a submit
button. Experiment with giving the buttons different name/value
pairs.

Explain how different submit buttons with different names or
values can be useful.

9.5 Form Elements and CSS

CSS2 did not define style commands for HTML form elements— most
browsers though recognise style commands for form elements. Since
there is no standard care must be taken however as elements can look
very different in different browsers.

For forms as is the case with many HTML elements experimentation
with styling commands is required.

9.6 Questions

Short Answer Questions

Q. 9.17: What is a form in a HTML document?

Q. 9.18: The HTML forms tag has a number of attributes. Explain
the action and method attributes.

c© USQ, June 12, 2012

222 Chapter 9 HTML Forms

Q. 9.19: If the action attribute is not set, where is the forms data
sent?

Q. 9.20: How does the user tell the client to send the contents of the
form to the server?

Q. 9.21: How are the contents of the form sent to the server?

Q. 9.22: Explain why clients need to know about MIME types and
file suffixes?

Q. 9.23: Why have hidden fields in a form?

9.7 Further Reading and References

(a) The W3C HTML4.0 standard defines the Forms elements in de-
tail including elements and attributes not discussed in this mod-
ule.

c© 2010 Leigh Brookshaw
Department of Mathematics and Computing, USQ.

c© USQ, June 12, 2012

Chapter 10 Server Scripts and the Common

Gateway Interface

Chapter contents
10.1 Introduction 223
10.2 Script Identification 224
10.3 Communicating with Scripts 224

10.3.1 Passing Parameters 225
10.3.2 Passing Path Information 226
10.3.3 HTML Input 227

10.4 Communicating with Clients 231
10.4.1 Content-type 231
10.4.2 Location 233
10.4.3 Dynamic Documents 233

10.5 Common Gateway Interface (CGI) 234
10.5.1 Environment Variables 234
10.5.2 The GET method 236
10.5.3 The POST method 237

10.6 Debugging Scripts 237
10.7 Saving State Information 238

10.7.1 Within Fill-out Forms 239
10.7.2 Within URLs 239
10.7.3 Within Path Information 239
10.7.4 Using Authentication 240
10.7.5 Using Cookies 240

10.8 Questions 243
10.9 Further Reading and References 245

10.1 Introduction

One of the most powerful features of the World Wide Web is the
ability of the Web server to execute programs that can create dynamic
documents. The programs can be as simple or as complex as you
like. You can use them as document word-search engines, as interfaces
for controlling external machinery, as electronic order forms, or as
gateways to other information services.

These programs, that are external to the web server, are called server
scripts, and can be written in any language. Some are written in an
interpreted language such as PHP (the language most favoured for
server scripts), Perl, Python or in a compiled language such as C,
C++,. . . . The choice of language is entirely up to the script writer.

When a user requests a URL that points to a script, the server executes
the script. Any output the script produces is returned, by the server,
to the user’s browser for display. URLs used to invoke server scripts
look just like any other URL.

224 Chapter 10 Server Scripts and the Common Gateway Interface

Note PHP scripts behave subtly differently in that they are not run as
a separate executable—because the PHP interpreter is built into
Apache as a module.

Even though the PHP module is built-in in many ways it behaves
as a separate executable.

Exercise 10.1: Your Apache server has a number of server scripts
included. An example of a server script can be found at URL (in-
sert your hostname and port number in place of hostname:port
in the following URLs)

http://hostname:port/cgi-bin/

Have a look in the directory ~/CSC2406/cgi-bin and the exam-
ples of server scripts in the source directory ~/CSC2406/src

10.2 Script Identification

How does the server know that the resource the URL points to is to
be executed and not the name of a file to be returned to the browser
for display? There are two alternate methods used. One method
is to designate particular directories on the web site as server script
directories. By default the Apache server defines one directory in the
server root, called cgi-bin to contain server scripts. The server treats
every file in this directory (or subdirectories below it) as an executable
script not a regular document to be returned to the browser.

The second method for identifying scripts, used by the Apache server
and some others, is to use a filename extension usually .cgi, to identify
server scripts. Server scripts identified in this way do not have to live
in a particular directory, they can reside anywhere in the document
tree. If both methods of identifying server scripts are available they
can be intermixed, placing some scripts in script directories and others
elsewhere in the document tree.

Note PHP scripts normally run using the second method. Your server
has been configured to recognise the “php” extension as a PHP
script.

10.3 Communicating with Scripts

Some scripts don’t require user input. You call them, via their URL,
and they display something. Scripts that don’t require input have
limited functionality. The interesting scripts require additional infor-
mation from the user: instructions to control a robotic arm, list of
e-mail addresses to which to send a message, a person’s name to look
up in a phone data base.

Scripts that require extra information will usually create documents
that give the user the opportunity to fill out a form. Alternatively
you can provide the script with the information it requires directly -
through the URL.

c© USQ, June 12, 2012

10.3 Communicating with Scripts 225

10.3.1 Passing Parameters

The most direct way to send information to a script is to add the
information to the URL. To do this add a “?” (question mark) to
the end of the script’s URL, everything following the question mark
is passed to the script. The string following a question mark is called
the “query string”.

Example 10.2: The following snippet of HTML demonstrates pass-
ing a string to a script

In Xanadu did Kubla Khan

A stately pleasure-dome decree;

...

<a>

The URL of the script is “/scripts/find.php”, the string being
passed to the script is “Kubla Khan”.

Like other parts of the URL, spaces, tabs, carriage returns and
other reserved characters must be escaped using the “%” character
followed by the 2-digit hexadecimal code1.

So the space between Kubla and Khan becomes %20

Exercise 10.3: A simple script supplied with your version of the
Apache server is http.php. This script will echo back all the
information it is given by the server. The URL for this script
should be

http://hostname:port/http.php

Pass strings to this script from your browser by appending the
strings to the URL. The strings should appear in the Query String

environment variable. Use escaped characters in your strings.
Are the returned values still escaped? What does this mean for
the author of server scripts?

Although a script is free to use any format for the query string, in
practice query strings fall into two predefined categories, keyword lists
and named parameter lists.

Keyword List

This list is most often used by scripts that perform word searches and
is used by the web browser when an ISINDEX HTML element has been
used in a document.

This type of query string is made up of a series of phrases separated
by “+” signs. The + sign separates the phrases. Phrases can be made
up of more than one word. To separate words within a phrase the
normal URL escape sequence %20 for a space is used.

Example 10.4: An example of a keyword list is

1 For all the character codes see the character codes on the course web site.

c© USQ, June 12, 2012

http://www.sci.usq.edu.au/courses/CSC2406/resources/codes/index.html

226 Chapter 10 Server Scripts and the Common Gateway Interface

The Rime of the Ancient Mariner

<a>

Exercise 10.5: Use Example 10.4 to pass keyword lists to the script
“test”.

For example
http://hostname:port/http.php?Samuel+Taylor+Coleridge

This form of a query string was developed originally for the ISINDEX

HTML element.

Named Parameter List

The keyword list has limited extensibility. A method of passing name-
value pairs allows for greater flexibility in the information passed to a
script. To this end the named parameter list was devised. A named
parameter list has the form

name1=value1&name2=value2&name3=value3&...

It consists of a series of name=value pairs separated by an ampersand
“&”. Each pair defines a named parameter for the script to use.

Example 10.6: An example of name-value list is

... The lovely lady, Christabel ...

<a>

This example passes two parameters to the script “/cgi-bin/find”.
The first parameter, “author” has the value “Coleridge”, the
second parameter, “poem” has the value “Christabel”.

Exercise 10.7: Use the example above to pass parameter lists to
the script “test”. For example (without the break in the URL)

http://hostname:port/

http.php?name=John+Smith&id=q9876543X

Note: the + symbol, as well as %20 can be used to escape the
space in parameter lists)

To pass arguments to a script that uses parameter lists, you need
to know what parameter names the script expects. The names a
script expects are normally a function of the script task, e.g. a li-
brary catalogue search script might expect arguments named author,
title, keywords etc. Usually this information is given in the script
documentation.

10.3.2 Passing Path Information

Scripts can be passed additional path information instead of, or in
addition to, regular query strings. The path is usually the partial URL
of some document elsewhere on your site. What the script does with
the partial URL is entirely script dependent. For example, the partial

c© USQ, June 12, 2012

10.3 Communicating with Scripts 227

URL might point to a configuration file that can modify the behaviour
of the script, or the script could parse the document modifying its
contents before passing it back to the requesting browser.

To send additional path information to a script that expects it, just
append the path on to the end of the script’s URL.

Example 10.8: To pass the document URL /coleridge/christabel.txt

to the script http://hostname:port/cgi-bin/formatpoem, the
full URL becomes (without the break)

http://hostname:port/

cgi-bin/formatpoem/coleridge/christabel.txt

The server processes the URL element by element. Once it recognises
the name of an executable script it executes the script and passes the
remainder of the URL to the script.

The advantage of this method is that documents that need processing
by server scripts have URL’s that are not overly complicated.

Exercise 10.9: Pass path information to the script http.php. For
example,

http://hostname:port/http.php/test/path/info

What effect (if any) does adding parameters to the URL have?
For example (without the break in the URL),

http://hostname:port/

http.php/path/info?name1=value1&name2=value2

10.3.3 HTML Input

Though you can send information to scripts by including parameters
explicitly in the URL, this approach is limited - you have to remember
the parameters of every script you might wish to utilise and the way
the script expects to receive them. A more powerful way to send data
to scripts is to create input documents, HTML pages that contain
input fields for the user to fill out and then submit to the script.

Keywords Input

Keyword input is the older form of input HTML documents. It was
used when scripts where mainly text-search engines. The HTML ele-
ment ISINDEX is used for this form of keyword searches.

Exercise 10.10: Create an HTML document in your document tree
containing the following HTML fragment

Enter keywords here:

<ISINDEX ACTION="/http.php">

Access the document and enter some keywords and press the
return key.

What is the result? What do you think the client has done?

c© USQ, June 12, 2012

228 Chapter 10 Server Scripts and the Common Gateway Interface

The ISINDEX element creates a text entry point for the user to enter
keywords. When the return key is pressed the browser bundles up
the keywords into a keyword style query string and sends them to the
script.

This interface is used by older scripts, by simple scripts, and in cases
where the script’s author wanted to maintain compatibility with old
browsers that don’t have fill-out forms.

Forms Input

In contrast to the keyword input, Forms based input is much more
flexible. With forms you can define text fields, checkboxes, radio but-
tons, pop-up menus, and scrolling lists. When the user fills out the
form and presses the submit button, the browser bundles the current
contents of the form into a parameter list-style query string and sends
it to the server which passes it to the script.

Example 10.11:

An example of a form is the following:

<FORM ACTION="/http.php"

METHOD="POST"

ENCTYPE="x-www-form-urlencoded">

<INPUT TYPE="RADIO" NAME="group"

VALUE="1" CHECKED> Bitter

<INPUT TYPE="RADIO" NAME="group"

VALUE="2"> Pale Ale

<INPUT TYPE="RADIO" NAME="group"

VALUE="3"> Porter

<INPUT TYPE="RADIO" NAME="group"

VALUE="4"> Stout

</FORM>

NAME Attribute How does the browser know how to bundle the
information from the forms page into name/value pairs? All form
input tags have a NAME attribute with an assigned value (this attribute
is mandatory for all fields). The person designing the forms page and
the server script decides on the name to be attached to each input
field. When the forms submit button is pressed the browser bundles
each input field into name/value pairs using the value of the NAME

attribute and the current value of the input field.

ACTION Attribute Where is the form information sent when the
submit button is pressed? One of the attributes of the FORM tag is the
ACTION attribute. The value of this attribute is the URL of the script
that should receive the name/value pairs from the form page. If the
ACTION attribute is missing the client will send the Form data to the
current URL.

c© USQ, June 12, 2012

10.3 Communicating with Scripts 229

ENCTYPE Attribute Another of the attributes of the FORM tag
is the ENCTYPE attribute. This attribute tells the client how to bundle
up the information in the forms into name/value pairs. The default
encoding type is

x-www-form-urlencoded.

Currently the only other encoding type is

multipart/form-data,

which is the mandatory type if the TYPE="FILE" input element is used.
The methods outlined above for passing information to scripts with
special characters escaped is the default URL encoding scheme. It is
safe to leave this attribute out.

METHOD Attribute The METHOD attribute of the FORM tag, tells
the client how to pass the information from the form to the server and
tells the script how the information from the form will be received.
The two methods we will be concerned with is the GET and the POST

methods. The default method is GET.

When the GET method is used the data is appended to the end of the
URL as discussed above. When the POST method is used the data is
sent to the server after the header fields. This means that the POST

method is better able to send large amounts of data to the server.

Example 10.12: Consider the following HTML page

<!DOCTYPE HTML PUBLIC

"-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<title>The ACTION & METHOD attribute</title>

</head>

<body>

<h1>The <code>ACTION</code> Attribute</h1>

<form

action="http://localhost:9000/http.php"

method="GET">

Input One:

<input type="TEXT"

name="TextField1"

value="Entry 1">

Input Two:

<input type="TEXT"

name="TextField2"

value="Entry 2">

<input type="SUBMIT"

name="SubmitButton"

value="Send">

</form>

c© USQ, June 12, 2012

230 Chapter 10 Server Scripts and the Common Gateway Interface

</body>

</html>

When rendered by the web client the page looks like this

When the submit button is pressed the server is sent the following
data by the client

GET /http.php?TextField1=Entry+1&TextField2=Entry+2&

SubmitButton=Send HTTP/1.0

Connection: Keep-Alive

User-Agent: Firefox/3.0 [en]

Host: localhost:9000

Accept: image/gif, image/jpeg, image/png, */*

Accept-Encoding: gzip

Accept-Language: en

Accept-Charset: iso-8859-1,*,utf-8

This shows that the GET method, the default method, attaches
the name/value pairs of the forms page to the URL defined by
the ACTION method.

When the POST method is used the same page is sent to the server
in the following way

POST /http.php HTTP/1.0

Connection: Keep-Alive

User-Agent: Firefox/3.0 [en]

Host: localhost:9000

Accept: image/gif, image/jpeg, image/png, */*

Accept-Encoding: gzip

Accept-Language: en

Accept-Charset: iso-8859-1,*,utf-8

Content-type: application/x-www-form-urlencoded

Content-length: 55

TextField1=Entry+1&TextField2=Entry+2&SubmitButton=Send

The forms data is now sent as data following the headers. The
Content-type header tells the server how the data is encoded

c© USQ, June 12, 2012

10.4 Communicating with Clients 231

and the Content-length header tells the server how much data
will follow the header fields.

10.4 Communicating with Clients

In the previous sections we have seen how the browser communicates
information to the server, but how does the script communicate to the
browser? We also need to discover, in later sections, how the script
receives the browser information from the server.

To communicate information to the browser the script only has to
write to standard out. For example the “printf” command in C will
print a string to standard out. The server sends all output from the
script to the browser.

To conform to the HTTP the server needs to add the mandatory
headers. One header the server cannot add is the Content-type header2

10.4.1 Content-type

In Module 8, on MIME typing we discovered that the server used
the HTTP header element Content-type to inform the browser the
type of document to follow. The server decides on the MIME type to
assign to the document by the filename extension of the document.
Server scripts can have any file extension and can return any sort of
document, in fact a script can return different document types with
each invocation. So how does the server or the browser know what
sort of document to expect from a server script?

The script itself must supply the Content-type header so that the
browser knows the type of data that will follow. The server will supply
the minimum required header fields and then will append the output
from the script.

It is the responsibility of the script to supply the Content-type field.
Without this field the output from the script will not be displayed cor-
rectly by the browser. The server will also check for correctly formed
output and will replace the script output with an error message to the
browser.

Note As mentioned in Module 7, on the HTTP, a correctly formatted
header is terminated with a blank line. The scripts header fields
are appended to the servers, so the script must supply the blank
line to terminate the header after it has sent it’s header fields.

Technically the protocol calls for the header lines to be termi-
nated with a carriage return/linefeed pair. In practice most
servers are flexible on this point and will accept a single new
line character as a line terminator.

2 If you want your script to bypass the header inclusion mechanism of the server then by
adding the string nph- (No Parse Header) to the script name the Apache server will
connect the output of the script directly to the input of the browser. This means that
the script must act like a server and send all the appropriate HTTP headers. The
server has stepped aside and left all the communication up to the script.

c© USQ, June 12, 2012

232 Chapter 10 Server Scripts and the Common Gateway Interface

Note PHP assumes a Content-type of text/html—so that PHP scripts
normally do not have to supply the HTTP header Content-type.
one the other hand if the script is not outputting text/html then
the script must supply the header line before any other output:

header(’Content-type: application/pdf’);

The function header() outputs a header line and must be called
before any other output from the scripts.

Exercise 10.13: The following simple C program will create an
HTML document when run as a server script. Compile the
program and run it from your server. Use the view source

menu item on your browser to check the source received by your
browser.

Experiment with alternate HTML code.

#include <stdlib.h>

#include <stdio.h>

void main(int argc, char *argv[], char *env[])

{

/*

** Print out the protocol header line

** and terminate with a blank line

*/

printf("Content-type: text/html\n\n");

/*

** print out the HTML header lines

*/

printf("<html><head>\n");

printf("<title>Simple Script</title>\n");

printf("</head><body>\n");

/*

** Here is the body of the document

*/

printf("<h1>Simple Script with Output</h1><p>\n");

printf("A simple message from a simple script!\n");

/*

** Finish the document so we have well-formed HTML

*/

printf("</body></html>\n");

}

Exercise 10.14: The following simple PHP program will output an
JPEG image. Place the script in a directory containing JPEG
images and run it via your server.

Add comments to every line of the script.

<?php

$files=glob("*.jpg") or

exit("Failed to find any images");

c© USQ, June 12, 2012

10.4 Communicating with Clients 233

$index=rand(0,count($files)-1);

header(’Content-type: image/jpg’);

readfile($files[$index]);

?>

10.4.2 Location

Sometimes you don’t want a script to create a document when it is
run but to choose intelligently among a number of different URLs to
send back to the browser. For example, you might wish to display one
document to local users and another to visitors from remote locations.
If this is the case then instead of printing a Content-type field in the
header the script should print a Location field pointing to the URL
you want the browser to fetch. When the server sees this field in the
header information from the script, it generates a redirection directive
to the browser which silently fetches the new URL. As there is no
document to produce, the script need only print the blank line after
the header information and exit.

Exercise 10.15: Write a simple script that will randomly select a
file from a directory (such as a directory of images). Pass the
URL of the randomly selected file pack to the server using the
Location header field. Do not return the file itself.

Use telnet to talk to the server and use the GET method to request
this script. How is the server translating the script Location
header so that the browser gets the correct document?

10.4.3 Dynamic Documents

So far we have discussed how the user can manually pass information
to the script through the URL parameter list or through an input
document of fill-out forms. The disadvantage of these methods are
that they require you to know the names the script is expecting and
requires the maintenance of multiple documents. As we have seen
above the script output can be used to produce well formatted HTML
that is sent to the browser by the server for display. This means that a
script should (and in most cases does) create its own input documents
on the fly. The standard design for server scripts is as follows:

(a) The browser requests the script without any parameters.

(b) The script is run by the server and because it has nothing to
work with (no parameters) it builds its own input document and
returns it to the browser.

(c) The user fills out the input document and sends it back to the
server by pressing the submit button.

(d) The server calls the script again, but this time the contents of
the fill out document are sent to the script as parameters.

c© USQ, June 12, 2012

234 Chapter 10 Server Scripts and the Common Gateway Interface

(e) With the input sent from the user the script now has something
to do. The script processes the users input and sends the results
back to be displayed on the user’s browser.

The script builds its own input form and formats the results.

If you are not satisfied with a script’s built-in user interface, or if you
wish to customise it with site-specific information (see Section 10.7 on
state information) you can create your own custom front-end for the
script by writing an input document for the script. Your custom input
document could be a forms page with the ACTION attribute set to the
script you are not satisfied with.

10.5 Common Gateway Interface (CGI)

So far we have discussed how the web client bundles up the information
it wishes to send to the server, and we have discussed how the script
talks to the web client, but we have not discussed how the server sends
the information from the client to the script.

The Common Gateway Interface (CGI) defines how the server and the
script communicate. It defines where the script will find the various
bits of information that has been encoded and sent from the browser.

Unfortunately, the interface between server and script went through
several evolutionary phases as the demands on scripts became more
complex. The mechanisms that the server uses to send information
to scripts can therefore seem arbitrary and redundant as backward
compatibility is maintained. In some cases the same information is
presented to the script in a number of different ways. Which version
of the information the script uses is entirely up to the script.

Where the information is found depends on the type of information
sent to the script, such as path information,named parameter list, key-
word list and the method used to invoke the script, e.g. GET or POST.
Currently these are the two most important methods for invoking
server scripts.

10.5.1 Environment Variables

Before the server invokes the script, it fills the script environment with
useful information about itself, the current request, and the remote
browser. The information is stored in “environment variables”3 that
the server will set before invoking the script.

3 Environment variables are variables that are maintained by the operating system. They
are stored as name/value pairs and maintain a list of useful information that programs
can access to learn about the environment they are running under. On a Unix box,
at the prompt (under the C-shell and BASH) the command printenv will list all
the defined environment variables. In C programs environment variables are accessed
through the parameter list of the main routine. For example int main(int argc, char

*argv[], char *env[]) The optional string array char *env[] contains the environ-
ment variables.

In PHP scripts they can be found in the associative array $ ENV Under most operating
systems all languages have the ability to access environment variables.

c© USQ, June 12, 2012

10.5 Common Gateway Interface (CGI) 235

The following is a summary of some of the CGI environment variables
(For a complete list of environment variables set by the Apache server,
see the Apache documentation).

SERVER SOFTWARE The name and version number of the server software e.g. “Apache/1.3.41”.

GATEWAY INTERFACE The gateway interface and version number, currently “CGI/1.1”.

SERVER PROTOCOL The server protocol and version number used to invoke the script;
either “HTTP/1.0” or “HTTP/1.1”.

SERVER NAME Server’s host name, e.g. www.sci.usq.edu.au.

SERVER PORT The port on which the server is listening.

SCRIPT NAME The name and path of the script executing.

AUTH TYPE Authorization type associated with the URL that called the script.
For example “Basic”.

REMOTE USER Name of the remote user when using username/password authen-
tication.

REMOTE HOST The fully qualified domain name of the remote host, if known.

REMOTE ADDR IP address of the remote host.

REQUEST METHOD The request method used, e.g. GET, HEAD, POST etc.

PATH INFO If present, the additional path information added at the end of
the script URL.

PATH TRANSLATED The contents of PATH INFO translated into a physical path. That
is, the path to the resource on the server disk.

QUERY STRING If present, the query string following the script URL, e.g. every-
thing after the “?” in the URL.

CONTENT TYPE For POST requests, the MIME type of the attached information.

CONTENT LENGTH For POST requests, the length of the attached information.

HTTP USER AGENT Name and version number of the browser

HTTP REFERER The URL of the document that contains the link to the script
URL. This is the document that sent the user to the script.

HTTP COOKIE A magic cookie passed to the server from the browser via the
Cookie header.

This is only a partial list of the environment variables defined by the
CGI protocol. Some servers extend the list of variables by adding
extra variables that are not defined by the CGI protocol. In the case
of the Apache server the extra variables defined can also depend on
compile time options. You must always read the documentation of the
server to find out exactly what variables are available.

Example 10.16: The information about the current request is stored
in environment variables. If the current request was (without the
break in the URL)

c© USQ, June 12, 2012

236 Chapter 10 Server Scripts and the Common Gateway Interface

http://hostname:port/

cgi-bin/formatpoem/coleridge/christabel.txt

then the following environment variables would have the values

SCRIPT NAME = “/cgi-bin/formatpoem”,
PATH INFO = “/coleridge/christabel.txt”,
PATH TRANSLATED = “/usr/local/web/coleridge/christabel.txt”
Where we have assumed that the document root is /usr/local/web.
The document root is the root directory where the server expects
to find all documents.

10.5.2 The GET method

The GET method is the default method employed by the browser
to request a document. It is also the default method for invoking
a script. One of the environment parameters passed to the script is
the REQUEST METHOD which contains the value of the method used to
invoke the script.

Keyword List

The keyword list (§10.3) is the original method used to send data to a
script. It is the way the data entered in the ISINDEX HTML element
is sent to the script.

The environment variable QUERY STRING will contain the keyword list
string. The string will be a “+” separated list of key phrases that are
in URL-encoded form (that is characters not allowed in URLs will be
encoded).

The keyword list will also be sent to the command line of the script
where each phrase will be an element in the command line array (char
*argv[] in C). The phrases will be unescaped, with one phrase per
element of the command line array.

Which version of the list, either the parsed command line version or
the raw QUERY STRING version the script chooses to use is entirely up
to the script author.

The amount of data that can passed to the script by the GET method
is limited by the operating system the server is running on. The size
of command line buffers and environment buffers is normally around
a kilobyte.

Path Information

The path information (§10.3.2) is passed to the script in the two envi-
ronment variables PATH INFO and PATH TRANSLATED. The path infor-
mation is parsed so that URL escape codes are removed.

The PATH INFO environment variable contains the parsed original string.
The PATH TRANSLATED environment variable contains the physical path
to the resource on the host machine. This means that the document

c© USQ, June 12, 2012

10.6 Debugging Scripts 237

root defined in the server configuration file (see the Server Configura-
tion module 11) has been added to the PATH INFO to make an absolute
path.

Named Parameter List

The named parameter list (§10.10), like the keyword list, appears as
the value of the environment variable QUERY STRING. The string is not
parsed and remains in its URL-escaped version.

Exercise 10.17: Use the script “http.php” and the examples above
to check where and in what form the path information and the
different lists are passed to the script.

Make certain to use URL encoding in conjunction with the special
characters ’+’, ’?’ and ’&’ in the strings. It is important to note
which are sent to the script URL encoded and which are not.

10.5.3 The POST method

Only the Forms tag allow the default method GET to be overridden
using the METHOD attribute. The effect of the POST method is that the
REQUEST METHOD is set to POST and the QUERY STRING will be empty.
Instead of placing the query string in an environment variable, with
the POST method the query string will have to be read by the script
from standard input. There is no guarantee that the data on standard
input will be line oriented, in fact it shouldn’t as new line characters in
the original query string will be URL escaped. There will be no end-of-
string or end-of-file marker either. To read the data, scripts examine
the environment variable CONTENT LENGTH which contains the exact
number of bytes to be read on the standard input.

The string read in on standard input will be URL-encoded and will
have to be parsed.

Additional path information is handled the same for both POST and
GET methods.

The POST method does not suffer from the limitations of the GET

method — small buffers. This method is used when large amounts
of data needs to be sent to the script.

Exercise 10.18: Use the script “http.php” and a simple Forms

document to experiment with both the GET and POST methods.

Again note where the data appears to the script and whether it
is URL-encoded or not.

10.6 Debugging Scripts

It can be tricky to debug scripts as they are under the control of the
server not the author. There are however a few things that can be
done to minimise headaches.

For PHP scripts run from the Apache PHP module:

c© USQ, June 12, 2012

238 Chapter 10 Server Scripts and the Common Gateway Interface

• make use of the “print” and “var dump” statements to output
error information. Format all error messages in standard HTML
so that the web browser can display the error message.

• Redirect error messages to the server’s error log file using the
“error log()” function.

• Check the server error log file for error messages from the server
or the PHP module.

For scripts written in other languages and that are not run by an
Apache module:

• Test your program from the command line first. Make use of
command line keyword query strings to test as much of your
code as possible.

• Redirect standard error to standard out, or only send error mes-
sages to standard out. Format all error messages in standard
HTML so that the web browser can display the error message.

• Messages sent by the script to standard error get redirected by
the server into its error log file. Check the server error log file
for script error messages. Be sure to output the script’s error
messages with the script name, as the log file can be large and
difficult to read4.

• Check the server error log file for error messages from the server.
For example if you see the error message Malformed header

from script you have probably forgotten to print the HTTP
Content-type header line. Remember the header must be fol-
lowed by an additional blank line before starting the text of the
document.

• If the browser does something really weird when the script is
run, such as wanting to place the output in a file and not display
it, check that the MIME type specified with the Content-type

header is correct. Remember it is this header information that
tells the browser how to handle the data that follows.

10.7 Saving State Information

One of the limitations of the HTTP and the CGI interface is that it
doesn’t provide an easy way to keep track of a user’s previous invoca-
tions of a script. Each time a user invokes a script, it’s as if it were
for the first time. This is a major drawback for scripts that need to
maintain a long-running transaction. A couple of examples of scripts
that need to maintain state information (that is the current state of
the script, for example, the values stored in variables) are:

• Online shopping. A shopping cart script in which a user while
browsing a catalogue adds to a growing list of purchases.

4 The Apache log files can be found in the directory ~/CSC2406/logs. The content format
of the log files and where they can be found are all configurable.

c© USQ, June 12, 2012

10.7 Saving State Information 239

• Multipart test or questionnaire, where questions on a page de-
pend on the answers given on previous pages.

There are multiple ways to store state information, below are some,
the choice of which method to use is dependent on the application,
the preferences of the script author, and the security required.

10.7.1 Within Fill-out Forms

An obvious way to save state information is in the fill-out forms gener-
ated by the script. The first time the script is called the query string is
empty and the script can use its default values. On subsequent invoca-
tions the query string contains values that the user submitted. Fields
are repeated on subsequent forms with initial values submitted by the
user on previous forms. Every time the script is called, it regenerates
a new form based on the values of the old form, so the form’s settings
are preserved.

Sometimes though you do not wish the saved values to be displayed
by the browser, either because the form would become too cluttered
and difficult to follow, or you want to pass parameters back to the
script without it being obvious in the document. In these cases the
input field of type “HIDDEN” can be used. Any information you place
in HIDDEN fields will be passed to the script in the query string but will
not be displayed by the browser. You can place as many hidden fields
in a document as you wish, containing any information you please.

Note Do not use HIDDEN fields for important or sensitive information
because they are not protected from tampering by the user. The
user can view the source of any document passed to the browser.
Any hidden fields can be modified by the user at any time.

10.7.2 Within URLs

If a script does not use fill-out forms, state information can be pre-
served directly in the script’s URL.

When the script constructs a page, any links on the page pointing back
to the script (or any other script) can have a query string added to
the URL. Remember the query string (everything after the “?”) can
be in any style (as long as it is URL encoded). The keyword list and
name/value pairs styles are just the two defined by the CGI/1.1 pro-
tocol. Anything in the query string will be placed in the environment
variable QUERY STRING.

So a script that produces a page that has links in it can add query
strings to the URLs on the page and preserve state information across
pages.

10.7.3 Within Path Information

Like the query string, the appended additional path information at
the end of a URL can contain state information. One technique for
maintaining state information is to write the information to a database
or file using an encoded session ID. The session ID can be incorporated

c© USQ, June 12, 2012

240 Chapter 10 Server Scripts and the Common Gateway Interface

into the additional path information of the URL and point to a file
containing the state information of the session.

To ensure that the session id is always incorporated when the script
is invoked the browser can be tricked into appending the path infor-
mation every time the script is invoked. For example

(a) Script is invoked without a session ID in the additional path
information of the URL.

(b) Script creates a session ID and the corresponding session file.

(c) Script sends a redirection request to the browser using the Location
header field. The redirect to the browser reinvokes the script but
with the session ID appended.

(d) Now every time the browser is requested to get the script with-
out the session ID appended it will use the redirect URL which
has the current session ID appended. The browser remembers a
redirection URL for an entire session.

All links to the script in static documents will not have any additional
path information making it easy to create them. The browser itself
will add the session information to the URL after the first redirection
request. This information of course will last while the browser remains
running.

10.7.4 Using Authentication

Basic HTTP authentication requires the user to enter a username and
password (see Module 12 for a fuller discussion on authentication). If
your script requires a user to login to access it then the CGI protocol
automatically creates a unique session ID for you, the user’s login
name. This can be used as a key into a database or disk file used to
keep track of the session information.

When authentication is in effect, the script can find the user’s login
name in the environment variable REMOTE USER, and the authentica-
tion type (usually the word “Basic” if username/password authenti-
cation is used) in the variable AUTH TYPE.

10.7.5 Using Cookies

The most powerful and versatile way of retaining state information
is with cookies5. Cookies are name=value pairs very much like the
names parameters in the CGI query string. Unlike the query string,
however, cookies are sent back and forth in the HTTP header rather
than within the HTML URLs or forms.

Cookies have a number of important advantages over other methods
for storing state information.

• Cookies are maintained by the browser, minimising the work of
the script or server.

5 The etymology of the term “cookie” is debatable.

c© USQ, June 12, 2012

10.7 Saving State Information 241

• They can be associated with the entire site or a particular URL
path. This allows a site to maintain a series of interacting scripts
that share or pass state information to each other via cookies.

• Cookies can be assigned an expiration date. By default a cookie’s
lifetime is limited to the current session, but cookies can be cre-
ated that will persist for days or longer.

There are also problems with cookies:

• The user (through the browser options) can determine whether
cookies are accepted and stored. Scripts must therefore always
allow for stateless interactions.

• Cookies and document caching can occasionally interact in strange
and unpredictable ways. This is normally a problem with the
proxy server not handling the non-caching properties of the cook-
ies correctly.

Cookies are set and retrieved through a HTTP header. To create
them, add one or more Set-cookie: fields to the header lines.

The syntax for the Set-cookie: header is (without the line break)

Set-cookie: CookieNAME=CookieVALUE; EXPIRES=date;

PATH=path; DOMAIN=domain_name; SECURE

Example 10.19: The following code sets a cookie with the name
poet and the value Samual+Taylor+Coleridge

Set-cookie: poet=Samual+Taylor+Coleridge

In detail, the cookie options are:

cookieNAME=cookieVALUE A string of characters (excluding
white space, commas and semicolons) specifying the name of the
cookie and the value of the cookie. The value of the cookie is opaque,
meaning it is not interpreted in any way whatsoever. The selection of
the name and value pair are entirely up-to the script.

This is the only required option on the Set-Cookie header.

EXPIRES=date This attribute specifies a date string that defines
the valid life of that cookie. Once the expiration date has been reached,
the cookie will no longer be stored or given out.

The date string is formatted as:

Weekday, DD-Mon-YYYY HH:MM:SS GMT

The only legal time zone is GMT and the separators between the
elements of the date must be dashes.

An example of a valid expiration attribute is

EXPIRES=Wednesday, 09-Nov-01 23:12:40 GMT

This attribute is optional. If not specified, the cookie will expire when
the user’s session ends. That is, when the browser is terminated.

c© USQ, June 12, 2012

242 Chapter 10 Server Scripts and the Common Gateway Interface

DOMAIN=domain name When searching the cookie list for valid
cookies, a comparison of the domain attribute of the cookie is made
with the Internet domain name of the host from which the URL will
be fetched. If there is a tail match, then the cookie will go through
path matching to see if it should be sent. “Tail matching” means
that domain attribute is matched against the tail of the fully qualified
domain name of the host. A domain attribute of “usq.edu.au” would
match host names “www.sci.usq.edu.au” as well as “www.usq.edu.au”.

The default value of domain is the host name of the server which sent
the Set-Cookie header.

PATH=path The path attribute is used to specify the subset of
URLs in a domain for which the cookie is valid. If a cookie has already
passed domain matching, then the path name component of the
URL is compared with the path attribute, and if there is a match, the
cookie is considered valid and is sent along with the URL request.

The path “/x” would match both “/xy” and “/x/y.html”. The path
“/” is the most general path.

If the path is not specified, it as assumed to be the same path as the
document being described by the header which contains the cookie.

SECURE If a cookie is marked secure, it will only be transmitted
if the communications channel with the host is a secure one.

If secure is not specified, a cookie is considered safe to be sent in the
clear over unsecured channels.

Cookie HTTP Request Header

When requesting a URL from an HTTP server, the browser will match
the URL against all cookies and if any of them match, a line containing
the name/value pairs of all matching cookies will be included in the
HTTP request. The format of the cookie HTTP request header sent
by the browser is

Cookie: cookieNAME1=OPAQUE STRING1; NAME2=OPAQUE STRING2 ...

A server script can access the cookie request header through the envi-
ronment variable HTTP COOKIE where it has been copied by the server.

Example 10.20: The following code sets a cookie for the path
/poets

Set-Cookie: poet=Samual%20Taylor%20Coleridge; path=/poets;

expires=Wednesday, 09-Nov-01 23:12:40 GMT

A request for a document contained in the path /poets would
generate a cookie request header by the browser of

Cookie: poet=Samual%20Taylor%20Coleridge

A subsequent Set-Cookie request of

c© USQ, June 12, 2012

10.8 Questions 243

Set-Cookie: poem=The%20Rime%20of%20the%20Ancient%20Mariner;

path=/poets/poems

would mean that a request for a document in the path “/poets/poems”
would generate a cookie request header by the browser of

Cookie: poet=Samual%20Taylor%20Coleridge;

poem=The%20Rime%20of%20the%20Ancient%20Mariner

All cookies matching the path attribute are sent.

Exercise 10.21: Modify the server script “http.php” to send cook-
ies when it receives a specific keyword, such as “cookie”. For
example

http://hostname:port/http.php?cookie

Should generate the following header

Set-cookie: myCookie1=testValue1

Experiment with alternate paths for cookies. Modify the script to
read the “extra path information” and add this path information
to the set-cookie command. For example

http://hostname:port/http.php/alt/path?cookie

This command would generate the following header

Set-cookie: myCookie2=testValue2; PATH=/alt/path

Copy “http.php” around your document tree and access it from
different directories. See which cookies are sent from the browser.
Give each cookie a different name and value so that they can be
identified.

Exercise 10.22: What happens if you resend a cookie to the browser
with different attributes and a different value but the same name?

How do you think a script can delete a cookie from the browser’s
list of stored cookies?

Exercise 10.23: PHP has the ability to specify “sessions”—that
is, a consistent way to preserve certain data across subsequent
accesses by a client.

Read the PHP manual section on sessions.

Modify the “http.php” script so that a number of variables are
registered for the current session using the global variable $ SESSIONS.
Output the contents of this variable each time the script is called.

Explain how “cookies” and $ SESSIONS variable are different.

10.8 Questions

Short Answer Questions

Q. 10.24: What is a dynamic document?

c© USQ, June 12, 2012

244 Chapter 10 Server Scripts and the Common Gateway Interface

Q. 10.25: How does the client request the server to run a script?

Q. 10.26: How does the client parse information to a script?

Q. 10.27: What characters must be escaped before passing them to
the server script?

Q. 10.28: How does the server know that a particular URL points
to a script?

Q. 10.29: How is a keyword list sent to a script?

Q. 10.30: The POST and GET methods and the ISINDEX tag all send
data to server scripts but in different ways. How are they differ-
ent?

Q. 10.31: What are name/value pairs? How are they sent to a
script?

Q. 10.32: How is path information sent to a script?

Q. 10.33: Can name/value pairs and path information be combined?

Q. 10.34: How is the content of a Forms page broken into name/value
pairs?

Q. 10.35: Why do scripts have to add the Content-Type header to
their output to the client.

Q. 10.36: How do scripts send data to the client?

Q. 10.37: What is a redirection directive?

Q. 10.38: What is the Common Gateway Interface?

Q. 10.39: Where does the CGI define where the POST method data
is to be found? The GET method data? The ISINDEX keywords?

Q. 10.40: What sort of information is passed via environment vari-
ables?

Q. 10.41: What information is passed to the script as command line
arguments?

Q. 10.42: The path information sent to the script can be found in
the two environment variables PATH INFO and PATH TRANSLATED.
What information is found in each variable?

Q. 10.43: Which information passed to the script is parsed so that
URL escape codes are remove? Which information is not parsed?

Q. 10.44: When is the environment variable CONTENT LENGTH re-
quired by scripts?

Q. 10.45: What is state information?

Q. 10.46: Why are server scripts considered stateless?

Q. 10.47: How do server scripts maintain state information? List
all possible ways.

Q. 10.48: How are cookies set by a script? How are they retrieved?

c© USQ, June 12, 2012

10.9 Further Reading and References 245

10.9 Further Reading and References

(a) Browse the PHP manual available on the course web site.

(b) The cookie specification was first proposed by Netscape Commu-
nication Corp. The original white paper can be found at their
web site.

(c) An alternate cookie specification, that is slightly incompatible
with the Netscape specification, has been proposed in RFC 2109
and RFC 2965.

c© 2009 Leigh Brookshaw
Department of Mathematics and Computing, USQ

c© USQ, June 12, 2012

246 Chapter 10 Server Scripts and the Common Gateway Interface

c© USQ, June 12, 2012

Chapter 11 Server Configuration

This module covers some of the aspects of configuring a server. It does
not cover all of the available configuration directive available to the
web administrator. Apache 2.x has approximately 350 directives. All
of the Apache directives can be found in the Apache documentation
under the link “Run-time configuration directives”.

The Apache server is written in a modular form. Features are associ-
ated with modules, add a module and add that module’s features—also
add that modules configuration directives. Normally, only a subset of
modules are available, which means only a subset of configuration di-
rectives are available.

This module will concentrate on core features of servers, features that
all servers must implement in some form or another to conform to the
HTTP. You will not be expected to memorise all directives discussed
in this module but you must be familiar with the major directives that
change the behaviour of the server.

Chapter contents
11.1 Introduction 247
11.2 Global Configuration Files 248
11.3 Global Configuration Directives 249

11.3.1 The Root Directories 249
11.3.2 Virtual Document trees 250
11.3.3 User Directories 251
11.3.4 AccessFileName directive 252
11.3.5 <Directory . . . > directive 252
11.3.6 <Location . . . > directive 253
11.3.7 AllowOverride directive 255

11.4 Directory Access Control Files 255
11.4.1 Options directive 256
11.4.2 Redirection 257
11.4.3 Directory Resources 258
11.4.4 ErrorDocument Directive 260
11.4.5 Encodings and Languages 261
11.4.6 Handlers 263
11.4.7 Imap Files 264

11.5 Questions 265
11.6 Further Reading and References 266

11.1 Introduction

There are a myriad of servers available today, both freeware and com-
mercial. All have their advocates, but apart from differences due to
operating system idiosyncrasies and cosmetic administration features
(such as a GUI) all are based on the original servers developed at

248 Chapter 11 Server Configuration

CERN and NCSA. Also, servers must be able to understand the HTTP
and the CGI which restricts the addition of non-standard features.

One of the most popular servers is the Apache Server. A freeware
server that grew directly from the original NCSA server and there-
fore inherited that server’s features and structure. Though originally
written for Unix operating systems, Apache is available for Microsoft
systems as well.

11.2 Global Configuration Files

All servers will have some variation on the configuration file or files.
Even servers with an administration GUI will have configuration files,
which can be either changed by hand or through the GUI.

The Apache server has at least two configuration files that effect the
global operation of the server, they are httpd.conf and mime.types

The file httpd.conf contains the basic operating parameters, docu-
ment and server tree definitions, access control &c. of the site and
is read by the server at start up. This file is normally split into a
number of independent files for ease of administration. At the end of
the httpd.conf file will be Include directives that define additional
configuration files that should be loaded at start up.

The file mime.types contains the list of MIME types that the server
will recognise. This file is normally complete and never need be
touched. The form of the file is straight forward with the MIME
type defined first followed by the list of file extensions. The server
maps the file extension to the MIME type and adds the MIME type
to the document through the Content-Type header field1

All configuration files follow the same format, a # symbol starts a
comment line, non-comment lines start with the configuration direc-
tive followed (on the same line after white space) by the configuration
value.

Exercise 11.1: Study the Apache configuration files, which can be
found in the directory ~/CSC2406 Server/conf/ and its sub-
directory extra.

The configuration directive Include is used to include additional
configuration files. The main configuration file is split for ease of
maintenance only. It allows directives to be grouped by module
and purpose.

Read the comments (lines beginning with the hash/sharp/pound
symbol #) associated with each configuration directive.

Apache’s default configuration file does not contain all the possible
configuration directives, it only contain the most frequently used, or
the directives that need a default value defined. The server documen-
tation contains a complete list of the server configuration directives.

1 Apache can also be compiled with a MIME magic module. This is a module that will
read the first few bytes of a file and try and ascertain the MIME type of the file by
looking for magic bytes that identify the file and any associated application.

c© USQ, June 12, 2012

11.3 Global Configuration Directives 249

Exercise 11.2: The course web site has a link to the documenta-
tion of your version of Apache. Using the descriptions of key
configuration directives below as a reference, browse the server
documentation and study the complete list of configuration di-
rectives.

Configuration directives come in two flavours, Global and/or Local,
where local means that they can be applied at the directory level of
the server’s document tree. The directory configuration directives ap-
ply only to the directory specified, and its sub-directories. If allowed,
these sub-directories can have there own configuration directives. This
creates an hierarchy of configuration directives. If allowed, later direc-
tives (in the hierarchy) override earlier directives. This feature allows
the different parts of a Web site to be configured very differently to
each other.

We will look at the global directives first then see how to achieve finer
control over the document tree with directives for individual directo-
ries.

11.3 Global Configuration Directives

The following define some of the Global configuration directives. These
directives are only defined for the global configuration file that Apache
runs at start up. These directives then apply to the entire site.

11.3.1 The Root Directories

DocumentRoot directive

The documents that a server are to make available to the world are
stored in the Document Tree. The tree is a hierarchy of directories
containing the pages of the site.

The root directory of the document tree is called the document root—
the document root corresponds to the top level URL for the site, that
is the URL path ’/’ represents the document root.

Example 11.3: If the server is configured with the document root
as

/usr/local/www,

then the URL—

• http://hostname/

will direct the server to look for the document

/usr/local/www/.

The trailing slash of the above URL means “the document
root”.

• http://hostname/poets/colleridge.html

will direct the server to look for the document

c© USQ, June 12, 2012

250 Chapter 11 Server Configuration

/usr/local/www/poets/colleridge.html

At the top level of the document tree, the document root, will be
the welcome page for the site. The welcome page is the document
referenced by the site URL http://hostname/ (See §11.4.3 on how to
modify this behaviour).

ServerRoot directive

The server root directory is where the server software and all its sup-
port files are stored. Among the files found here are log files, config-
uration files, icons used internally by the server, maintenance utilities
&c. More importantly, it is here that the directory containing the CGI
scripts is normally placed.

The server and document roots may be located together or kept sep-
arate. A common practice (and the default setting for Apache) is to
place the document root inside the server root in order to keep all
web-related files together.

Listen directive

This directive defines the port the server will listen on. This is nor-
mally port 80. If the port number is changed from the expected port
of 80, then the URL of the site must incorporate the port number
defined by this directive.

User and Group directives

When any process is run on the Unix system it belongs to a particular
user and group. The user and group a process runs under defines
the privileges it has. By specifying a restricted user and group that
the server will run under can limit the damage done by buggy server
scripts run by the server. Like any user—scripts started by the server
are owned by the server. The standard user and group for a server
on a Linux system is nobody (the least privileged of all users). For
example:

User nobody

Group nobody

11.3.2 Virtual Document trees

Alias directive

A single document root is too restrictive in practice, it is difficult to
maintain a document tree with one root. A useful feature provided
by Apache, and many other servers is the ability to support virtual
document trees. This allows the administrator to combine different
physical directories into a unified single hierarchy of URLs.

Example 11.4: By using the Apache Alias directive

Alias /photos/ /mnt/cdrom/

c© USQ, June 12, 2012

11.3 Global Configuration Directives 251

you can arrange for the physical directory /mnt/cdrom/, a mounted
CDROM, to become part of the document tree. The server now
maps URLs beginning with

http://hostname/photos/

to the physical location /mnt/cdrom/—a location independent of
the document root of the site.

The virtual document tree feature allows a site to spread out across ad-
ditional disks (including disks mounted across networks) as it grows—
but still maintain the same URL hierarchy.

ScriptAlias directive

A special form of the virtual document tree is the directory (or di-
rectories) containing CGI scripts. This directory is normally part of
the server root, not the document root. The CGI script directory is
kept separate from the document directories as it will have special
privileges reflecting the special status of the files it contains. Also for
administration purposes it is convenient to keep executable scripts in
one place.

The ScriptAlias directives dual purpose is to map an external direc-
tory into the document tree, exactly the same way as the Alias direc-
tive, but it also tells the server that the aliased directory will contain
only executable scripts. Any resource requested from the script direc-
tory will be executed by the server, not returned to the web browser.

There is no limit on the number of Alias or ScriptAlias directives
that can be defined.

Note This is only required for scripts or executables that are run by
the Web server and are independent of it. Since the Apache
Web server has a PHP module—PHP scripts are interpreted by
the server and not executed independently, therefore they do not
need to reside in a special directory

11.3.3 User Directories

A special form of the virtual document tree is user supported directo-
ries in which portions of local users’ home directories are made part of
the document tree. Access to user supported directories are through
URLs starting with the tilde “~” character. When the server recog-
nises the tilde it maps the username following the tilde to the user’s
personal web directory2.

UserDir directive

Apache uses the directive UserDir to specify the name of the directory,
in the user’s home directory, that will contain the personal web pages.

2 The server’s interpretation of a tilde derives from the Unix shell directive “~” which
signifies the user’s home directory, and the “~user” directive which signifies the home
directory of user.

c© USQ, June 12, 2012

252 Chapter 11 Server Configuration

Example 11.5: The Apache default directory for personal web pages
is public html. This means that a URL of the form

http://hostname/~w0012345/

will be mapped to the directory public html in the home direc-
tory of user w0012345.

If the home directory is /home/student/w0012345/ then the
URL maps to /home/student/w0012345/public html/

A variety of syntaxes are allowed, giving rise to interesting vari-
ations. For example if a user requests the document

http://hostname/~w0012345/results/CSC2406.html

then the actual resource retrieved depends on the form of the
directive:

Directive: UserDir public html

File Retrieved: —
/home/student/w0012345/public html/results/CSC2406.html

Directive: UserDir /usr/web

File Retrieved: /usr/web/w0012345/results/CSC2406.html

Directive: UserDir /home/*/www

File Retrieved: /home/w0012345/www/results/CSC2406.html

Directive: UserDir http://newhost/*

File Retrieved: — http://newhost/w0012345/results/CSC2406.html

See the Apache manual for all possible variations on the syntax for
UserDir mappings.

11.3.4 AccessFileName directive

The directory access control file is a file that can be placed in any of the
directories found in the document tree. This file contains configuration
options for the server. The options found in this file, unlike the global
options, only apply to the directory containing the access file. The
options also apply to any of the directory’s sub-directories.

If the file does not exist in a directory then access to the directory is
dependent on the global configuration file, or the access control files
in parent directories.

This directive sets the name of the directory access file. The default is
.htaccess. For this reason the directory access file is commonly called
the “htaccess file”.

11.3.5 <Directory . . . > directive

The directives in the configuration file adjust global settings for all the
directories at a site. To achieve finer control over the document tree,
options can also be set for individual directories, either by changing
the central configuration file or by placing a configuration file in the
directories themselves.

c© USQ, June 12, 2012

11.3 Global Configuration Directives 253

The global configuration file for the site is normally controlled by the
site’s administrator and it sets global configuration policies for the
whole site. On the other hand, individual sections of a large site may
be controlled by that section’s maintainer. A large site can have many
site users only controlling sections of the site. By enabling directives in
the global configuration file that allow control of individual directories
the site’s maintainer can place limitations on specific sections of the
site, restricting the power of that section’s maintainer (Consider the
danger that User Directories pose to a Web administrator).

In the global configuration file only, to apply directives to a specific
directory tree in the site the directives must be grouped so they only
apply to a specific directory. Configuration directives set for a specific
directory are automatically inherited by all its sub-directories. If a
sub-directory has its own configuration section, its directives override
its parent’s configuration — options are not additive.

To specify the directory to be modified either the full path name of the
directory can be used (the <Directory...> directive), or the URL of
the directory can be used (the <Location...> directive). Wild card
characters can be used when specifying directories so that the direc-
tives apply to all directories that match the directory specification.

To group directives so that they apply only to a specific physical lo-
cation in the document tree then the directives must be bracketed
by the begin directory — end directory pair, <Directory ...> and
</Directory>.

To specify the directory, the full physical path name of the directory
must be specified. All directives placed between the begin directory
— end directory pair only apply to the specified directory and all its
sub-directories.

Example 11.6: Suppose the document root of the site is /home/www/
then to modify the directory /home/www/poets/colleridge, the
modifying directives must be within the following Directory di-
rectives

<Directory /home/www/poets/colleridge>

...

...

</Directory>

If the directory /home/www/poets/colleridge contains a direc-
tory called poems then the directives defined for the parent di-
rectory colleridge also apply to the child directory poems.

By placing directory configuration directives in the global configura-
tion file the site administrator can control how and to what extent
users of the site can modify the server’s configuration in their own
sections.

11.3.6 <Location . . . > directive

The <Location ...> directive is the same as the <Directory ...>

directive except while the <Directory ...> directive takes the file

c© USQ, June 12, 2012

254 Chapter 11 Server Configuration

system name of a directory as a parameter the <Location ...> di-
rective takes the URL of the directory. For example,

DocumentRoot /usr/local/www

<Directory /usr/local/www>

Options Indexes FollowSymLinks MultiViews

</Directory>

<Location />

order allow,deny

allow from all

deny from .au

</Location>

because the document root is /usr/local/www the <Location ...>

directive and the <Directory ...> directive refer to the same direc-
tory.

Example 11.7: Using Example 11.6, the same directory can be
specified as

<Location /poets/colleridge/>

...

... (Place directives here)

...

</Location>

The document root is /home/www, so the URL maps to

/home/www/poets/colleridge.

Which is the same directory as the previous example.

The advantage of using the <Location ...> directive to specify a
directory is that URL paths are generally shorter and are less likely
to change if the physical layout of the site is modified.

Example 11.8: Wild card characters can be used when specifying
directories.

Suppose the user directories are all stored under the directory
/home, then one way to turn off all options for user directories is

<Directory /home/*/public_html>

Options None

</Directory>

or

<Location ~*>

Options None

</Location>

c© USQ, June 12, 2012

11.4 Directory Access Control Files 255

11.3.7 AllowOverride directive

This directive determines whether the configuration directives speci-
fied for the current directory (and by default its sub-directories) can
be overridden using access control files (see §11.4).

When the server finds an access control file in a directory it needs to
know which directives declared in that file can override earlier access
information.

Note This directive is extremely important one for the Web admin-
istrator. This is the directive the Web administrator can use in
the global configuration file to restrict the configuration directives
available to the individual section maintainers of the site.

The allowed values for the directive are

All The directory access file can override all earlier directives. This
is the default

None The directory access file cannot override earlier directives. In this
case the directory access file in the directory is not even read.

AuthConfig The directory access file can override authorisation directives,
such as AuthGroupFile, AuthName, AuthType, AuthUserFile,
require &c. (see module 12 on Security).

FileInfo The directory access file can override directives controlling doc-
ument types, such as AddEncoding, AddLanguage, AddType,
DefaultType, ErrorDocument, &c. (See sections below)

Indexes The directory access file can override directives controlling direc-
tory listings, such as DirectoryIndex, FancyIndexing,
AddDescription, AddIcon, &c. (See §11.4.3 below)

Limit The directory access file can override directives controlling host
access. (see module 12 on Security).

Options The directory access file can override directives controlling spe-
cific directory features, such as the Options directive. (See §11.4.1
below)

Exercise 11.9: Suggest which options above should not be allowed
for user directories.

11.4 Directory Access Control Files

An alternative to specifying per-directory options in the global con-
figuration file, is to place an access control file at the top of every
directory tree you wish to modify. The access control file is a plain
text file with the name specified by the AccessFileName directive (the
default name is .htaccess). The access control file contains the direc-
tives that can also be placed between the directory grouping directives
in the global configuration file.

c© USQ, June 12, 2012

256 Chapter 11 Server Configuration

Note An important point to remember about access control files, though
they should be writable by trusted users only, they must be read-
able by the server, which is in effect the world.

Exercise 11.10: Read the documentation on the Apache run-time
configuration directives. These can be found either at the course
site, or part of your own Apache installation.

Each directive specifies the Context in which the directive can be
used. Of interest is server config, directory, and .htaccess.

• Server config implies the directive is part of the server con-
figuration and can only be found in the global configuration
files.

• Directory implies that the directive is part of a directory
configuration group and must be placed within the

<Directory ...> ... </Directory>

or

<Location ..> ... </Location>

directives.

• .htaccess implies the directive can be placed in a directory
access file.

Some directives can be placed in all three locations, some can’t.
Study the directives (there are a lot more of them than will ever
be discussed in this study book)3

Note the type of directives that can be placed in the various
locations, especially the type of directives that can be used in a
.htaccess file.

Note The Directory and Location directives themselves most defi-
nitely cannot be placed in a directory access file. The two di-
rectives are used in the global configuration file to define which
directory/location to apply the grouped directives.

The directory access file applies its directives to the directory it
resides in and does not need or want a grouping declaration. The
server will return a 500 status code “Internal Server Error”

11.4.1 Options directive

This directive controls the basic features of the directory. Each option
is a trade-off between convenience and security. For example, allowing
the server to follow symbolic links opens up the possibility of someone
(either deliberately or accidentally) creating a link from the public
web area to a more private part of the system.

The available options are:

3 Your are not expected to memorise the names of all the Apache directives. You are
expected to know the issues discussed in the study book and that there are groups of
directives designed to perform specific tasks.

c© USQ, June 12, 2012

11.4 Directory Access Control Files 257

None No features are enabled for this directory

All All features are enabled for this directory. Except the MultiViews
parameter, that must be set explicitly. This option is the default
directory setting.

FollowSymLinks The server will follow symbolic links in this directory, wherever
they lead!

SymLinksIfOwnerMatch The server will follow symbolic links only if the link target is
owned by the same user as the link itself.

ExecCGI Executable scripts (CGI scripts) are allowed in this directory.

Includes Server-side includes are allowed in this directory.

IncludesNoExec Server-side includes are allowed in this directory, but the exec

and include commands are turned off.

Indexes Automatic directory listing is allowed for this directory if a wel-
come page has not been defined or is not present.

MultiViews Turns on content negotiation for this directory

11.4.2 Redirection

Occasionally a file or an entire directory on a server needs to be moved.
This could happen because the site has outgrown the hardware and
the directory structure needs to be reorganised. In this case a directive
can be used to redirect the browser (using the 3xx status codes, see
Table 7.3) to the new location of the document.

Redirect Directive

This directive is similar to the Alias directive but the second param-
eter (the new location of the document) can be a complete URL not
only a physical location.

Example 11.11: Suppose the directory /poets/colleridge/ had
become so large and generating so much activity on the site that
it was decided to move it to its own site

http://poets.org.au/colleridge/,

then the directive (which should be all on one line)

Redirect permanent /poets/colleridge/

http://poets.org.au/colleridge/

would generate a 301 status code response from the server, with
the Location header field containing the new address for the
document. The web client would then silently re-request the
document using the new URL.

The Redirect directive has an optional status field that specifies the
status code response for the server. The values of the optional status
parameter are permanent (301), temp (302), seeother (303), and gone

(410), the default status code is 302.

c© USQ, June 12, 2012

258 Chapter 11 Server Configuration

11.4.3 Directory Resources

When a web browser requests a URL that points to a directory re-
source rather than a file resource the server must decide how to handle
the request. It obviously cannot return the contents of the directory.
There are two options defined for web servers in this situation, they
can either synthesis an HTML file that lists all the files in the directory,
or they can search for a default file in the directory to display.

DirectoryIndex directive

This directive sets the name of the welcome page that the server will
attempt to display when a browser requests a URL that ends in a
directory name rather than a file name. When the server receives a
request for a URL that points to a directory the server looks inside
the directory for a file matching one of the file names specified by the
DirectoryIndex directive. If a file is found that matches one of the
file names in the list this file is returned. If no matching file is found
and automatic directory listing is turned on the server will construct
a list of all the files in the directory, in HTML, and send that back to
the browser. If no matching file is found and if automatic directory
listing is turned off then an error message is returned to the browser.

By default the welcome file is called index.html, the idea being that
this file is an index of the contents of the directory.

Example 11.12: The directive

DirectoryIndex index.html index.php index.cgi

tells the server to look, in order for the files index.html, index.php,
and index.cgi. The first is a static document, the second a PHP
script and the last a CGI executable. If the file is found it is re-
turned, if the PHP script is found it is parsed, and if the CGI
script is found it is executed and its output is returned.

Automatic Directory Synthesis

Most servers have the ability to synthesise a directory listing on the
fly when a request is received for a directory lacking a welcome page
file (defined by the DirectoryIndex directive). For security reasons
automatic directory listings should be turned off and welcome pages
supplied for all directories (this will be discussed in greater detail in
module 12 on security), but situations arise where automatic directory
listings are a useful feature, for example a directory where the contents
are changing rapidly because multiple people are using it as a “drop
box”, when maintaining a directory tree shared by both FTP and Web
servers.

To avoid having to supply a welcome page with links to every file
in the directory, the server can synthesise an HTML page containing
links to every file in the directory.

Automatics directory listings can be turned on for a directory using
the Options directive. For example the directive

c© USQ, June 12, 2012

11.4 Directory Access Control Files 259

Options Indexes

turns on automatic directory listing for the directory tree it appears
in.

Apache supports two styles of directory listing a compact simple style
and a more elaborate fancy style.

Example 11.13: A simple directory listing

A fancy directory listing

The compact simple style lists the files in the directory by name,
each name a link to that file. The fancy indexing style adds file size,
modification date, MIME type information in the form of an icon, as
well as an optional short description of the file.

The fancy indexing icons are defined, by MIME type, by file extension,
or by Content-Encoding. If the server can not resolve the icon for a
file then a default icon is employed.

Some of the directives that control directory listing are:

FancyIndexing Turn on fancy indexing.

AddIcon Set the icon to display next to a file. The file name is defined by
its type extensions. For example,

AddIcon /icons/image.xbm .gif .jpg .xbm

DefaultIcon The icon image to display for a file when no icon image is known.

c© USQ, June 12, 2012

260 Chapter 11 Server Configuration

ReadmeName Set the name of the file to display at the end of the directory
listing.

HeaderName Set the name of the file to display at the top of the directory
listing.

AddDescription Define the descriptive string to add to a file’s listing. For example,

AddDescription "The planet Mars" /web/pics/mars.png

IndexIgnore Add to the list of files to ignore when creating the directory
listing. Wild-card expressions can be used for the file names.

AddIconByType Set the icon to display next to a file. The file name is defined by
its MIME type. For example,

AddIconByType /icons/image.xbm image/*

AddIconByEncoding Set the icon to display next to a file. The file name is defined by
its encoding. That is, by the compression method used to com-
press the file. The compression method is defined by its MIME
encoding. For example,

AddIconByEncoding /icons/compress.xbm x-compress

11.4.4 ErrorDocument Directive

The normally uninformative error messages returned by the server
and displayed by the browser (for example, the infamous error mes-
sage Status 404, Document not found) can be replaced using the
ErrorDocument directive. If a document is not found, a site search
page could be displayed, or if there is an authorisation failure when a
user attempts to access a restricted document then instructions could
be displayed on how to subscribe to the site and gain access to re-
stricted documents.

Exercise 11.14: An example of a local 404, Document not Found

response is the site

http://www.sci.usq.edu.au/.

Request an nonexistent document from this site.

The directive takes two parameters:

(a) the HTTP status code for the error, and

(b) the URL of the document to display, or a string to display in well
formatted HTML.

For example:

ErrorDocument 404 /status/notFound.html

The document to be displayed can be local to your site, located else-
where, a static document, a PHP script, or a CGI executable.

c© USQ, June 12, 2012

11.4 Directory Access Control Files 261

Exercise 11.15: Create a page to be displayed when a 404 error
occurs. Install it on your server and modify the appropriate con-
figuration file so that the server will display your page instead of
the default message.

Test your page and configuration by requesting a nonexistent
document.

11.4.5 Encodings and Languages

Apache supports content negotiations. This feature allows the server
to choose from several alternatives, the file that is most preferred by
the browser requesting it. The alternative files can have language
differences, MIME type differences or encoding differences (different
compression methods).

Server content negotiation is specified on a directory by directory basis
in Apache by setting the option MultiViews (see §11.4.1 above).

AddType Directive

As outlined in Module 8, Web servers use the MIME typing system to
tell browsers what kind of document the browser is receiving. Browsers
need this information so they know how to display the document. The
main way Apache decides on a document’s MIME type is to match the
document’s extension against the list in the mime.types configuration
file. To add MIME types it is a simple matter to edit this file. However,
this file contains the official list of MIME types recognised world-wide.
It is generally better to leave this list alone, and use the configuration
directive AddType, to add a new, local MIME type to the server list.

The AddType directive takes two parameters, the new MIME type and
the file extension. To attach more than one extension to a MIME type
use multiple AddType directives (this is different to the mime.types
configuration file).

Example 11.16: The declarations

AddType image/x-fauna dog

AddType image/x-fauna cat

AddType image/x-fauna rat

would tell Apache to consider all files that ended in the extensions
dog, cat and rat to be new image files of type image/x-fauna.
The AddType directive takes precedence if the MIME types have
already been defined in the mime.types configuration file4.

AddEncoding directive

Compressing files can significantly speed up downloads across the net-
work. The AddEncoding directive is used to support clients who can
unpack compressed files on the fly. The effect of this directive is to

4 Remember when adding your own MIME types to adhere to the convention of beginning
experimental types and subtypes with an x-.

c© USQ, June 12, 2012

262 Chapter 11 Server Configuration

add the Content-Encoding field to the header of all the files ending
with one of the indicated suffixes.

The advantage of this directive is that files can be compressed without
loosing the underlying MIME type of the document. That is, if a
document has multiple file types, for example CSC2406.html.gz then
the Content-Encoding and Content-Type headers will be

Content-Encoding: gzip

Content-Type: text/html

The client will know the HTML document has been compressed.

DefaultType directive

This directive tells Apache what MIME type to use when it can’t
determine the type from the extension. The most common choices
for the default MIME type is either text/plain or application/octet-
stream. The first declares the document as a plain text document
which the browser will try to display, the second as a binary document
the browser will write to disk and let the user sort out what to do with
it.

AddLanguage directive

Language negotiation means that the browser can negotiate with the
server for the preferred language of the documents (if they are avail-
able). When language negotiation is active on the server (by setting
the MultiViews option), multiple copies of the same document, in dif-
ferent languages, can be placed together in the same directory. When
the browser requests a document with multiple language versions, the
document most preferred by the browser can be returned.

The default configuration file has the AddLanguage directives for about
20 languages5

Example 11.17: Suppose you have a manual in three languages,

• manual.html.xh Xhosa version

• manual.html.tl Tagalog version

• manual.html.sa Sanskrit version

when the browser requests the document using the base name
manual.html, the browser’s most preferred language version of
the document will be returned by the server.

5 The current Language and Country codes for the Internet can be found in ISO 639-1
and ISO 3166 respectively. Language codes were originally defined as 2 letter codes
(ISO 639-1) but the number of combinations of 2 letter codes is too small for the
number of languages so the new codes are 3 letters. The resources directory contains
pages listing both ISO 639-1 and ISO 3166

c© USQ, June 12, 2012

11.4 Directory Access Control Files 263

LanguagePriority directive When the browser does not support
language negotiation the server does not know which language has
priority so the directive LanguagePriority is used to define which lan-
guage has priority. It is also used to break a tie. The languages are
listed in decreasing order of priority.

Exercise 11.18: Create a new directory in your document tree and
place in it multiple copies of the same document in different lan-
guages. (if you know only one language — fake it!)

Add a directory access file to the directory and

• turn on content negotiation

• add your language extensions

• prioritise your languages.

The server should now be able to identify your language exten-
sions and be able to negotiate with a browser on the most pre-
ferred language.

From your browser request the generic document (without spec-
ifying the language extension). Which document do you expect
to receive? Why?

Modify your browser to accept your language extensions. Mod-
ify the language order of preference. Does negotiation occur?
Modify the preferences again? Do you get a different document?

11.4.6 Handlers

Apache offers a general handler mechanism to attach special actions
to certain types of documents. This mechanism is used to implement
CGI-scripts, clickable image-maps, server-side includes and other fea-
tures.

Ordinarily, when the server is asked to retrieve a URL, it finds the
file that the URL corresponds to, uses the suffix to determine the
appropriate MIME type, and sends the contents back to the browser.
However if a handler is defined for that file type, the file is passed to
the handler software, which processes the file in some way and returns
the results.

Handlers can be internal to the server, that is compiled into the server,
or implemented externally by a CGI script.

The following are some of the internally implemented handlers defined
by the Apache server;

send-as-is Send the file as is without adding HTTP headers.

cgi-script Treat the file as a CGI script.

imap-file Imagemap rule file.

server-parsed Parse for server-side includes

type-map Parse as a type map file for content negotiation

c© USQ, June 12, 2012

264 Chapter 11 Server Configuration

(See the Apache documentation on handlers for a complete list of the
server handlers).

The following are some of the directives used to assign handlers:

AddHandler Associate a handler with a file suffix. For example, to tell Apache
that the suffix cgi is associated with scripts to be run by the
cgi-script handler, the directive is

AddHandler cgi-script cgi

ScriptAlias Alias a directory containing CGI scripts. For example

ScriptAlias /cgi-bin/ /home/web/cgi-bin/

SetHandler All files of the appropriate type in the directory will be parsed by
the handler. This directive is used within a directory access file, a
<Directory> directive or <Location> directive, and defines the
handler for the directory’s content.

Action Associate a CGI script with a MIME type. Every time a file
with the Action MIME type is requested, the file is parsed by
the associated CGI script. For example,

Action text/html footer.php

Every time a document of type text/html is requested, it is
parsed by the script footer.php, which could add a standardised
footer to every HTML page.

Script Associate a CGI script with an HTTP request method. For ex-
ample:

Script PUT /cgi-bin/upload.php

When a PUT request is issued from a browser it is passed to the
script upload.php.

11.4.7 Imap Files

To handle clickable image maps, Apache internally implements a han-
dler called imap-file. It reads map files that define the hot regions in
clickable image maps and directs the browser to the appropriate URL
when the user clicks the mouse in one of those regions.

Example 11.19: To declare that imap-file is the handler for map
files with the suffix .map, the following directive can be added to
either a directory access file or the global run time configuration
file

Addhandler imap-file map

Exercise 11.20: Study the Apache documentation on Imap files
(see the mod imap documentation). This documentation gives
the necessary directives and examples of creating imap files.

Create a directory to hold your image, imap file and documents
linked via the image map.

Create, or find on the Web, an image you like.

c© USQ, June 12, 2012

11.5 Questions 265

Create the image map file for your image specifying at least 3
hot spots

Test your map.

11.5 Questions

Short Answer Questions

Q. 11.21: What is the difference between the Document Root and
the Server Root?

Q. 11.22: What is the Welcome Page?

Q. 11.23: What are virtual document trees? How are they imple-
mented? Why would you want virtual document trees?

Q. 11.24: Why is it a good idea to keep CGI scripts in a separate
directory?

Q. 11.25: How would you redirect the client to the correct URL
when a document or document tree has moved? How does the
server inform the client of the document or document tree’s new
location?

Q. 11.26: What is automatic directory listing?

Q. 11.27: How does the server know that the requested URL is a
directory?

Q. 11.28: What is the .htaccess file? What is it’s purpose? Why
should it’s name be changed from the default?

Q. 11.29: What is the purpose of the AddType directive?

Q. 11.30: How does the server implement Language Negotiation?

Q. 11.31: Explain the difference between Global configuration direc-
tives and Directory configuration directives

Q. 11.32: How do you specify the directory you wish your direc-
tives to apply to in a Global configuration file? In a Directory
configuration file?

Q. 11.33: What is the difference between the Location and Directory
directives? What are they used for?

Q. 11.34: What is the purpose of the access control file?

Q. 11.35: What are the purpose of handlers? What is the difference
between internal and external handlers?

Q. 11.36: Explain why the Directory and Location directives can-
not appear in a directory access file.

c© USQ, June 12, 2012

266 Chapter 11 Server Configuration

11.6 Further Reading and References

(a) The Apache configuration files supplied with the server. Re-
member these files only contain the basic configuration directives
needed to set up a vanilla server.

(b) The Apache documentation supplied with the server. This doc-
umentation list the complete set of directives available for the
server. Do not be daunted by the number of directives, you are
not expected to remember individual directives by name. You
are expected to remember the ideas and concepts that group di-
rectives.

(c) The Apache documentation has a page on “Content Negotiation”
that outlines the method used. A link can be found, at the top
level in the Apache manual.

(d) Apache documentation on Handlers. This explains how Apache
assigns implicit or explicit handlers to parse file types. A link
can be found, at the top level in the Apache Manual.

c© 2011 Leigh Brookshaw
Department of Mathematics and Computing, USQ.

c© USQ, June 12, 2012

Chapter 12 Server Security

This module covers some of the aspects of web security. That is,
maintaining the integrity of your site from malicious attack or simple
stupidity. It will also cover some of the more advanced aspects of web
security, user authentication and communication integrity.

Chapter contents
12.1 Introduction 267
12.2 Insecure Server Features 268

12.2.1 Automatic Directory Listing 268
12.2.2 Symbolic Links 269
12.2.3 CGI Scripts 270
12.2.4 User Directories 270
12.2.5 Access Control Files 271
12.2.6 Log Files 271
12.2.7 File Permissions 271

12.3 Server Security Features 272
12.4 Authorisation Features 272

12.4.1 IP/Hostname Access Control 272
12.4.2 Configuring IP/Hostname Access Control 273

12.5 Authentication Features 276
12.5.1 User Authentication 276
12.5.2 Configuring User Authentication 277

12.6 Communication Security 282
12.6.1 Encryption 283
12.6.2 Cryptographic Algorithms 283
12.6.3 Message Digest 287
12.6.4 Digital Signatures 288
12.6.5 Digital Certificates 289
12.6.6 The Transport Layer Security Protocol . . 290

12.7 Questions 291
12.8 Further Reading and References 291

12.1 Introduction

The Web’s power to open the site to the world also exposes the site
to security risks. The type and degree of the risk varies from the well-
meaning internal user (or web administrator for that matter) who
unwittingly creates a symbolic link (shortcut) that opens up a private
part of the system to public perusal, to the malicious hacker intent on
wiping your disks clean.

The security issues are complex (and most are beyond the scope of
this course). Some of the things to worry about are:

268 Chapter 12 Server Security

• Remote web users browsing beyond the confines of the web docu-
ment tree. Especially being able to peruse such files as the system
password file, user’s home directories, system configuration files
etc.

• Unauthorized local users knowingly or unwittingly modifying web
documents, configuration files and/or directory access files.

• Remote crackers subverting the web site by exploiting bugs in
the server or (much more likely) CGI scripts.

• Internet sniffers capturing network packets that contain sensitive
information, such as username/passwords or credit card informa-
tion.

Two types of tools for countering these threats are at the administra-
tors disposal:

• security features built into the web protocols, and

• general network security measures that can be used to protect
the server’s host machine.

We will concern ourselves only with the former - how to use the web
protocols to make the site as secure as these protocols allow. Securing
the host machine is a topic in itself that will not be covered in this
course.

12.2 Insecure Server Features

There are a number of basic precautions to take within the server
software. The simplest of these is to turn off server features that
won’t be required. It is an axiom of programming that the simpler it
is the less chance for mistakes.

12.2.1 Automatic Directory Listing

During the creation and maintenance of a site, all sorts of detritus can
accumulate in the document tree: old documents, test CGI scripts,
editor auto-save files, new documents not ready for inclusion into the
document tree, and things that just seemed like a good idea at the
time.

If automatic directory listings are left on, it is possible for a visitor to
browse through your document tree perusing resources not meant for
public consumption, and learning more about your system than you
might like.

A standard and not very secure form of simple web security is to create
documents in the document tree that no other document references
— “orphan” documents. This means that the only way someone can
view the document is to know its URL explicitly. This of course can
only work if automatic directory listing is turned off.

There are two ways to turn off automatic directory listing

c© USQ, June 12, 2012

12.2 Insecure Server Features 269

(a) Ensure that every directory has a welcome page so that it is
displayed instead of the synthesised directory listing, or better
yet,

(b) turn off the feature completely in the server configuration file.

The second option is by far the safest method, rather than remember-
ing to ensure that every directory has a welcome page.

If automatic directory listing is required it can be turned on, on a
directory by directory basis using the access control file for each di-
rectory.

Exercise 12.1: If your server has automatic directory listing turned
on experiment with turning it off for specific directories, using the
directory’s access control file.

What happens if you request a directory where automatic direc-
tory listing is turned off and there is no welcome page?

12.2.2 Symbolic Links

Using symbolic links (also called “shortcuts”) to extend the document
tree to other parts of the file system is a potential security risk. When
a web site is under the control of a number of people, it’s easy for some-
one to inadvertently create a link to a sensitive place on the system
(say /etc, which contains such juicy items as the system’s configura-
tion files!).

If symbolic link following is turned off, the document tree can still
be extended to other parts of the file system, but it must be done
explicitly in the server’s configuration file using an Alias directive.

Exercise 12.2: To create a symbolic link in Unix you use the com-
mand

ln -s [target-name] [link-name]

For example

ln -s /usr/man man

creates a symbolic link man/ in your directory tree that points to
/usr/man/. Changing directory to man places you in the directory
/usr/man/.

Experiment with this command making symbolic links to your
own files/directories and to files/directories you do not own (such
as /usr/man/).

By modifying the server configuration file or the directory access
files experiment with the Options directive and the parameters

None, FollowSymLinks, SymLinksIfOwnerMatch.

Don’t forget to turn on automatic directory indexing if the target
directories do not contain welcome pages.

How do the directives FollowSymLinks and SymLinksIfOwnerMatch

differ? What does “...if owner matches” mean?

c© USQ, June 12, 2012

270 Chapter 12 Server Security

Note Be careful, you could compromise the security of the machine
you are on if your create symbolic links to sensitive files.

12.2.3 CGI Scripts

Executable scripts pose the greatest risk because buggy scripts (and
there are a lot of them out there on the Internet) can be coerced into
doing things that their authors did not anticipate. The choices are to
turn off scripts entirely (not very practical) or to be very careful.

Make sure that any script you write or install does not allow a well
meaning or malicious user damage your system or access sensitive
parts of your system (such as a password file!).

Exercise 12.3: What does an “SQL-Injection Attack” mean? How
is it combated in PHP?

When the web server runs a CGI script it is run as the user id that
has been assigned to the web server. Make certain that the web server
is assigned a user id with no privileges.

Note PHP is a particularly dangerous scripting language. Mainly be-
cause it provides programing interfaces into so many areas of the
underlying operating system. When installing the PHP module
great care must be taken to ensure that only required features
are turned on.

Exercise 12.4: Read the Security section of the PHP manual and
familiarise yourself with some of the security issues of PHP.

12.2.4 User Directories

User directories are a major security issue. On multi-user systems
where anyone can place web pages in their private area the potential
for disaster is huge. For example

• Symbolic links to sensitive parts of the files system

• Insecure executable scripts

• Server side include documents running exec or include or just
including sensitive documents.

• Inadvertently placing private documents into their public web
directory.

Apart from the latter point if user directories are to be supported
then in those directories server side includes, following symbolic links,
executing scripts should all be turned off. For example:

<Directory /home/*/public_html>
AllowOverride FileInfo AuthConfig
Options Indexes SymLinksIfOwnerMatch IncludesNoExec
<Limit GET POST>

Order allow,deny
Allow from all

</Limit>
<Limit PUT DELETE>

c© USQ, June 12, 2012

12.2 Insecure Server Features 271

Order deny,allow
Deny from all

</Limit>
</Directory>

User directories can be disabled in Apache by the directive

UserDir disabled

12.2.5 Access Control Files

The default name for the directory access control file is (with Apache)
.htaccess. It is surprising how many sites have not renamed the file to
something different. As the server needs to read this file to decide on
the access control for the directory, once a user has gained access to
the directory then the user may be able to download the access control
file.

The access control file contains sensitive information about the web
site. A diligent hacker (and there are a lot around) could map the
entire site and all the access control files and exploit weaknesses in the
document tree.

A simple security measure - change the name of the access control file
from the default!

Exercise 12.5: By default the Apache Web server is configured not
to allow the downloading of the .htaccess file. How is this done?
What is the configuration directives used?

12.2.6 Log Files

A vast amount of information is stored in a Web server’s log files. In
fact all the information that is passed by the web client to the server
in the HTTP header lines can be stored in a log file. Server scripts
that fail, write error messages into the server log files, these are useful
for debugging server scripts but could be used to exploit weakness in
server scripts.

Most of the emphasis in this section is on how to make the server
secure from internal mistakes or external attacks. There is another
aspect to security ensuring that people who visit your site are ensured
confidentiality. After all, the log files will contain complete information
on every page retrieved by a particular host. If the user has had to
log onto the site then the user name could be stored along with the
host name.

Log files are sensitive documents that should be kept in a safe place,
with restricted access. The information logged into log files (which
is configurable in Apache) should be the bare minimum required to
monitor your site and correct problems.

12.2.7 File Permissions

File permissions are a powerful way of restricting access to sensitive
parts of the files system. If the web server cannot read a file, neither

c© USQ, June 12, 2012

272 Chapter 12 Server Security

can the world!

Exercise 12.6: The Change Mode command chmod is used in Unix
to change file permissions on files and directories. After reading
the Man page for chmod, you should be able to change the mode
on files so that the user (that is the owner of the file) cannot
read the file

chmod u-r filename

To reverse the mode, so that the user can read the file the com-
mand is

chmod u+r filename

If you can’t read the file then neither can your server, as your
server is running under your UID. Check that this is the case.
What is the error status and message returned by the server?

How do directories need to be changed to restrict access to the
files they contain, without changing the access permissions on
those files?

12.3 Server Security Features

Universal access was the original driving force behind the web. The
increase in web diversity has meant that security has had to become
an integral part of the HTTP.

The type of security offered by the HTTP and web servers ranges from
restriction based on domain names through to document encryption,
and server/client encrypted digital signatures.

Security features on a Web server can be roughly split into three cat-
egories: Authentication, Authorisation and Communication—which
can be used together or separately. Authentication requires a visitor
to identify themselves with a username and password. If they pass that
hurdle they are then checked to see if they are authorised to access the
requested resource. Authorisation can be based on the authenticating
username, the client IP, or domain name.

12.4 Authorisation Features

Authorization grants access to a resource based on the user’s username
or the machine the user is sending the request from.

12.4.1 IP/Hostname Access Control

In this type of resource authorisation, the server examines the incom-
ing connection and grants or denies access to the resource based on
the client’s host name or IP address.

This form of authorisation would appear safe at first but there are
number of holes that you should be aware of

c© USQ, June 12, 2012

12.4 Authorisation Features 273

• Host name look-ups are easily fooled by a technique known as
DNS spoofing. In effect, the connecting machine masquerades as
a trusted machine.

• IP address restriction is safer, it is harder to spoof an IP address,
but not impossible.

• Restriction by Domain Name or IP address says nothing about
the person trying to connect through the trusted machine. If the
trusted machine has been broken into then the user might not
be trusted! The compromised machine can be used as a base to
compromise other machines including yours!

When a browser attempts to access a URL that has been placed under
access restrictions, such as restricting the document to trusted hosts,
the server checks that the request came from one of the allowed hosts.
If it didn’t the server returns to the client the header containing the
403 Forbidden status code and will not service the requested URL.

12.4.2 Configuring IP/Hostname Access Control

To protect a directory based only on the IP address or host name of
the connecting host the following example should be used as a basis.

Example 12.7:

<Directory /usr/local/web/private>
Order Allow,Deny
Allow from .uq.edu.au
Allow from .anu.edu.au
Allow from 127.75.63
</Directory>

The example above shows basic IP/hostname authorisation as it would
be found in the server global configuration file. That is, the directory
it is to apply to has been specified using the Directory directive. Au-
thorisation directives can also be used within directory access control
files, where the Directory directive is not required.

Note Remember that directory access files can only override their in-
herited access control directives if the AllowOverRide directive
of the parent directory has been set to either All, or Limit. See
module 11 on server configuration.

The main directives for restricting access to resources are:

Order ... The order in which to evaluate the the restriction directives. For
example,

Order Deny,Allow

Deny from ... Deny access to some domains. For example,

Deny from .ozemail.com.au

Deny from .com.nz

Allow from ... Allow access from some domains. For example,

c© USQ, June 12, 2012

274 Chapter 12 Server Security

Allow from zeus.usq.edu.au

Allow from .com.au

Limit directive

The <Limit...> and </Limit> directives establish the access policy
for each HTTP method within a directory. Within the <Limit...> di-
rective is specified the list of methods that this access policy restricts.
The methods are the HTTP methods, such as GET, POST, PUT, DELETE
etc. Clients that try to use the listed method will be restricted ac-
cording to the restrictions listed within the Limit section. Ordinarily
only the GET method need be restricted. The POST method needs to
be used in directories that contain CGI scripts.

Note If the Limit directive is missing then the access directives apply
to all methods. As the number of methods increases (there are
many more than discussed in this study book) it is better to leave
out the Limit directive and ensure all methods are restricted.

Deny and Allow directives

Each Deny from and Allow from directive list either the IP address
or the hostname of a machine to either deny access or to allow access.

Each listed host can be a fully qualified domain name, such as www.sci.usq.edu.au,
a partial domain name such as .uq.edu.au, a full IP address, such as
139.23.45.67, a partial IP address, such as 139.231; or the keyword
all, signifying all hosts trying to connect.

Hosts can be listed on one long line, separated with spaces, or in
multiple short directives.

Order directives

The order in which the Allow and Deny directives are processed is
important, because it is the first match which is used. The Order

directive controls this.

Note The order in which the Allow and Deny directives are processed
is not the order they appear in the file. But the order specified
by the Order directive.

The possible values of the Order directive are:

Order Deny,Allow The deny directives are evaluated before the allow directives.

All requests that do not match any Allow or Deny directives are
permitted by default!

Order Allow,Deny The allow directives are evaluated before the deny directives.

Any requests that do not match any Allow or Deny directives are
denied by default!

1 Remember that the order for IP addressing is the reverse of a fully qualified domain
name. IP addressing is left-to-right while fully qualified domain names are right-to-left.

c© USQ, June 12, 2012

12.4 Authorisation Features 275

When an Order directive is processed by the server the fall through
or non-matching state for the evaluation of the Deny/Allow direc-
tives is set. If the Deny directives are to be processed first then the
non-matching state is to allow all machines to connect. If the Allow

directives are to be processed first then the non-matching state is to
deny all machines from connecting.

The non-matching state is equivalent to an implicit “Deny from all”
directive or an “Allow from all” directive.

Note If you are uncomfortable relying on the implicit non-matching
state an explicit Deny from all or Allow from all should be
added to the access directives.

Exercise 12.8: If there was not an initial state set what would/could
happen when processing the Deny/Allow directives?

Example 12.9: Here is an example of allowing everyone into your
site except for a number of machines that have been giving you
trouble

Order Allow,Deny

Allow from all

Deny from 139.34.128.67

Deny from ozemail.com.au

Exercise 12.10: In the example above, what would be the result if
the Order Allow,Deny directive was changed to Order Deny,Allow?

Example 12.11: Here is an example of denying access to everyone
except for a few trusted machines

Order Deny,Allow

Deny from all

Allow from .sci.usq.edu.au

Allow from 203.45.213.2 203.45.45.5

Exercise 12.12: In the example above, what would be the result if
the Order Deny,Allow directive was changed to Order Allow,Deny?

Exercise 12.13: In the example above, what would be the result if
the Deny from all directive was removed? How could you fix
this problem without putting the Deny from all directive back
in?

Exercise 12.14: An administrator has set up the following access
control

Order Allow,Deny

Deny from all

Allow from .sci.usq.edu.au

What is the result?

There are two ways to fix this problem—what are they?

c© USQ, June 12, 2012

276 Chapter 12 Server Security

Exercise 12.15: An administrator has a directory containing HTML
pages that are available to the world. This directory also has a
CGI scripts that should only be accessed from a specific secure
network.

How would the administrator set up the access control file for
this directory?

Test your solution on your personal web site.

Exercise 12.16: Create a directory and place in it an access control
file that denies access to the machine you are coming in on.

If you do not know your hostname use the Unix command hostname

to find out.

Make sure it is closed to you by using your browser to request a
document.

Connect to your server using telnet and request a document
from that directory.

What is the server’s HTTP response?

What happens to the HTML code in the body of the response?

Exercise 12.17: In Apache IP/Hostname access control is imple-
mented by the module mod authz host. If you study the manual
pages for this module you will notice that the Allow from and
Deny from directives have the extra parameter, not discussed
here, called env.

Using the examples in the Apache documentation, implement the
directives “User-Agent” and “Deny from env=...” so that you
are denied entry based on the browser you are using!

The module mod setenvif contains directives that can be used
to pass information to scripts and to other server modules so that
responses can be modified based on information contained in the
HTTP headers of the request.

12.5 Authentication Features

Server authentication requires the clients to authenticate themselves
first using a username/password. If they fail to authenticate them-
selves the request is rejected with a 401 Unauthorized response from
the server. If the authentication is successful the user is then checked
to see if they are authorised (see §12.4 below) to access the resource.
If that is successful then the resource is sent.

12.5.1 User Authentication

Currently there are two schemes employed by clients and servers for
username/password authentication, this is the Basic scheme and the
Digest scheme. Both schemes, apart from requiring a username and
a password also specify a realm name. The realm name is sent to
the client when the server is requesting username authorisation (“401

c© USQ, June 12, 2012

12.5 Authentication Features 277

Unauthorized” status response from the server). The client places the
realm name into the dialog window where the user enters her username
and password. On sites where a single user is required to enter a
different username/password to be able to access different parts of the
document tree the realm name is used to tell the user and client which
username is expected.

Most browsers are smart enough to remember the username/password
pairs that a user has entered during a session. The username/password
pairs are associated with realms. This means that whenever you re-
enter a realm, the browser will supply the correct username/password
for that realm.2

When the Basic scheme is used the username/password are encoded
using Base64 encoding, this is equivalent to sending the pair in clear
text. When the Digest scheme is employed the password is not sent
in clear text by the web client but is sent as part of an MD5 hashed
string (see §12.6.3). The string is made up of the realm, username,
password, method, URI and a one off random string sent by the server,
the nonce (number used once).

12.5.2 Configuring User Authentication

Adding password protection to a directory requires some preparation.
A list of authorised users needs to be created. Each user needs to
be assigned a password. Then the directory access file (or the global
configuration file) needs to be modified so that only selected users are
authorised to access the documents in the directory.

Username/Password Files

The first step in setting up user authentication is creating a file of
username/passwords. Apache offers many possible variants of this
file. For example, username/passwords could be stored in a text file,
a database file, the system file could be used, a remote server can be
queried &c.

The original system offered by servers (and the Apache default) is a
human readable file which is suitable for storing up to a hundred user-
name/passwords. This file is constructed completely independently
of the host operating system. Passwords are stored encrypted either
using the Unix crypt algorithm or the MD5 algorithm, both are one
way hash algorithms.

The Apache distribution comes with a utility programs called htpasswd

or htdigest. These program will create and add users to a password
file that Apache is capable of using to authenticate a user. For basic
authentication the htpasswd program is used, for digest authentica-
tion the htdigest program is used.

The command line parameters for htpasswd are

htpasswd [-c] password file user

2 The only way to force most browsers to forget username/password pairs for realms is
to shut them down!

c© USQ, June 12, 2012

278 Chapter 12 Server Security

password file is the path to the password file to be modified. user
is the name of the user to add to the password file. The optional
argument -c is used only when you want to create a new password
file.

The command line parameters for htdigest are

htdigest [-c] digest file realm user

digest file is the path to the digest file to be modified. user is the
name of the user to add to the digest file. The optional argument -c

is used only when you want to create a new digest file.

Example 12.18: The following is an example of creating a new
password file named password and adding the user Zaphod to it.

>cd ~/CSC2406/secure

>htpasswd -c password Zaphod

Adding password for Zaphod

New password: ********

Re-type new password: ********

>

The example above created a new password file called password.
There is nothing special about the name, it could have been anything
and there was nothing special about the location, it could have been
anywhere. Except you should never place a password file anywhere
within the document tree otherwise a remote user could download it!

The password file created by the htpasswd program is a text file that
looks something like the following

Example 12.19: An example of the contents of the password file
created by htpasswd

Zaphod:Xvqw73TD/a1

Trillian:ghL/POnQ20jK

Ford:q109F3TmnP

Arthur:lPkj198Bvd7a

Each line contains a “username:password” pair. The password
encrypted using the Unix crypt algorithm.

The username appears at the beginning of each line, followed by a
colon and the user’s encrypted password (no spaces surround the
colon). The password has been encrypted using the Unix crypt rou-
tine. This file can be modified by a text editor. The editor can be
used to fix spelling errors in users’ names or deleting users entirely.

Example 12.20: An example of the contents of the digest file cre-
ated by htdigest

Zaphod:Milliways:50682dbf5c2f76feaa59e3a57c145e35

Trillian:Milliways:bf7404ee0811050bffbad96917fcf5f9

Arthur:Milliways:405dfe0cbd38eac801ed2ad6f822ca86

Ford:Milliways:21dae74dd78e35a6183a439c3f53bda1

c© USQ, June 12, 2012

12.5 Authentication Features 279

Each line contains a “username:realm:password” triplet. The
password encrypted using the MD5 algorithm.

Exercise 12.21: Use the htpasswd program to create a number of
username/passwords for your site.

Information on the Unix crypt routine can be found through the
man pages. This routine is used to encrypt the user passwords on
all Unix machines. Have a look at the man page for this routine.

Exercise 12.22: Use the htdigest program to create a number of
username/passwords for your site.

Note DO NOT put the password or digest file anywhere in the doc-
ument tree. Any document in the document tree can potentially
be downloaded by remote users.

An obvious place to store authentication files is somewhere within
the server root, outside the document tree.

Group Files

Apache supports the idea of groups. If you have several distinct cate-
gories of user, each with their own authorization rights, administration
can be simplified by creating a series of named groups. The informa-
tion on groups is maintained in a group file.

There is no special tools for maintaining group files. They are simple
text files containing a list of group names and the users assigned to
each group. For example

example of a group file

Comments start with the "#" symbol

admin: george anna

staff: anna george fred keith

students: w9712675 w9204826 w9837659 w8971230

CSC2406: w9712675 w9204826

MAT3100: w9837659

In the above example we have five groups, admin, staff, students,
CSC2406, MAT3100 with a varying number of users assigned to each
group. Users can belong to more than one group simultaneously. The
structure of the group file is similar to the password file - group name,
colon, then a space separated list of users.

The group file can be placed anywhere it is convenient. Normally
it is placed in the same directory as the password file. There can
be multiple group files as there can be multiple password files. For
large sites it makes sense to split up password and group files. If
the site has more than a couple of hundred users then the simple
text versions of the password and group files become too tedious to
maintain and will slow the response of the server as it authenticates
and then authorises access. In these cases it is better to create more
efficient binary databases or relational databases of users and groups.

c© USQ, June 12, 2012

280 Chapter 12 Server Security

Note DO NOT put the group file anywhere in the document tree. Any
document in the document tree can potentially be downloaded by
remote users.

An obvious place to store authorisation files is somewhere within
the server root, outside the document tree.

Exercise 12.23: Create a group file for the users used in Exercise
12.21.

Authentication Directives

After the password and group files have been created, then the authen-
tication directives can be placed either in the global configuration file,
or in the directory access file. Combined with the authorization direc-
tives discussed above they provide a powerful system for restricting
access to resources on a Web server.

Note Remember that directory access files can only override their in-
herited authentication and authorisation directives if the AllowOverRide
directive of the parent directory has been set to either All,

Limit, or AuthConfig. See the section on server configuration.

The directives that control password authentication tell the server,
where to find the password file, where to find the group file, the realm
name of the directory, authentication scheme to use, and finally the
authorization rules for the authenticated users.

Below is an example of a typical directory control section.

Example 12.24:

<Directory /usr/local/web/private >

Add any options you want here

Comments are started with the "#" symbol

AuthName "Private Section"

AuthType Basic

AuthUserFile /usr/local/etc/httpd/secure/password

AuthGroupFile /usr/local/etc/httpd/secure/group

require group staff

</Directory>

This configuration example limits all access to only those users
in the group staff.

Auth. . . directives

The Auth. . . directives set up the basics for username/password au-
thentication. The AuthName directive specifies the “realm” name to
use when requesting authorisation for this directory. The realm name
is normally displayed in the browsers username/password dialog box.

AuthType specifies the type of scheme to use for username/password
authentication. Either “Basic” or “Digest”.

c© USQ, June 12, 2012

12.5 Authentication Features 281

The basic scheme does not allow for the user’s password to be en-
crypted by the browser before being sent to the server. The password
is sent in clear text, which could be intercepted by someone. The di-
gest scheme improves on this by sending the MD5 has of the password
combined with a server generated string (the nonce).

The only way currently to ensure passwords are truly encrypted is
to implement the application level Secure Socket Layer developed by
Netscape Communications. This unfortunately is not a simple proce-
dure and requires some knowledge of public/private key encryption,
and certificate authorities (see §12.6).

The main authentication directives are:

AuthName ... Name the authentication realm. Must be in double quotes. For
example:

AuthName "Members Only"

AuthType ... Authentication scheme. For example:

AuthType "Digest"

AuthUserFile ... Full path to the password or digest file. For example:

AuthUserFile /etc/httpd/passwd

AuthDigestDomain ... The domains this digest covers (only for Digest authentication).
For example:

AuthDigestDomain /secure/

AuthGroupFile ... Full path to the group file

AuthGroupFile /etc/httpd/group

The AuthUserFile and AuthGroupFile directives give the full physical
path of the password file and the group file. Although a AuthUserFile

is required for user authentication, the AuthGroupFile is only needed
if groups are going to be used for authentication.

The AuthDigestDomain directive is only used with digest authenti-
cation. It allows you to specify one or more URLs which are part
of the same realm (See the manual for more information on digest
authentication).

Require directive

This directive specifies which users and/or groups can gain access to
the directory. Remember, in all cases the user must still supply the
correct password to gain access! The require directive specifies which
users are even allowed to try.

As with the “order from”, “deny from” directives, the require di-
rective can be used in a Limit section. If the require directive is not
inside a Limit section then all HTTP methods will require authenti-
cation. Which in most cases is the behaviour you would want.

The form of the require directive is:

c© USQ, June 12, 2012

282 Chapter 12 Server Security

require user name1 name2 ... Only the named users can access the contents of the directory

require group group1 group2 ... Only users belonging to the named groups can access the
contents of the directory

require valid-user Any user defined in the password file can gain access to the di-
rectory (as long as they know their password!)

Only one require directive should be used. Though any number can
be used it is pointless as they all must match to authenticate the user.

Access control using IP/Hostname directives can be combined with
username/password authentication. The default action when the two
methods are combined is that the user must satisfy both, that is address
and user authorisation. The Satisfy directive can be used to mod-
ify the default behaviour so that users are granted access if they are
connecting from trusted machines or enter a valid username/password.

Exercise 12.25: Add an access control file to one of your directories
in the document root. Allow access to users from your password
file created above.

Modify the access file and play with various combinations of users
and groups.

Exercise 12.26: Create multiple password files with different users
in each. Assign a different password file to a parent and child
directory. Use access control files for this.

Add an AllowOverRide directive to the parent directory. Play
with various combinations of All, None, AuthConfig and Limited.
What effects do these various combinations have?

12.6 Communication Security

With the advent of electronic commerce it was clear that if it was
to succeed then it must be reliable, must ensure data integrity, and
protect transactions against third-party threats. If all three cannot
be assured then consumers should be unwilling to provide credit card
payment information over the Internet (though most consumers ap-
pear blithely unaware of the dangers).

The three factors vital for the continuation of electronic commerce
are:

Privacy The ability to control who sees, or cannot see, information and
under what terms.

Authenticity The ability to know the identities of communicating parties.

Integrity The assurance that stored or transmitted information is unal-
tered.

The server security we have been discussing so far does not address
the problem of a third party intercepting, reading or even altering the
communication stream between client and server. That is, how do

c© USQ, June 12, 2012

12.6 Communication Security 283

we ensure that the communications between client and server are not
susceptible to unauthorised network monitoring or packet sniffing.

12.6.1 Encryption

One solution is to encrypt the communication between client and
server.

Before we continue we need to define a few terms:

Cleartext Data that can be read and understood without any special tools.

Encryption The method of disguising plaintext in such a way as to hide its
content.

Ciphertext Cleartext data that has been encrypted to render it incompre-
hensible.

Decryption The process of turning Ciphertext back into Cleartext.

Cryptography Is the science, using mathematics to encrypt and decrypt data.
Cryptography enables users to store sensitive information or trans-
mit it across insecure networks (like the Internet) so that it can-
not be read by anyone except the intended recipient.

Cryptanalysis While cryptography is the science of securing data, cryptanalysis
is the science of analysing and breaking secure communication.
Cryptanalysts are also called attackers.

12.6.2 Cryptographic Algorithms

A cryptographic algorithm or cipher, is a mathematical function used
in the encryption and decryption process. A cryptographic algorithm
works in combination with a key – a word, a number, or a phrase – to
encrypt the plain text. The same plain text encrypts to different ci-
phertext with different keys. The security of encrypted data is entirely
dependent on two things: the strength of the cipher and the secrecy
of the key.

Symmetric Key Encryption

In symmetric-key or secret-key cryptography one key is used both for
encryption and decryption. Most modern symmetric-key ciphers are
known as block ciphers. This means that the cleartext message is en-
crypted in blocks. Historically the individual elements of a block where
the characters of the message, with the introduction of computers into
cryptography the individual elements of the block have become bits.
The characters of the message are represented by their ASCII equiva-
lents, and the message is chopped into fixed length blocks. Encryption
is performed on each of the blocks using a key that is also a number.

There are a number of symmetric-key algorithms being used today,
for example Data Encryption Standard (DES), triple-DES, Carlisle
Adams and Staffard Travares (CAST) algorithm, International Data
Encryption Algorithm (IDEA), Blowfish,

c© USQ, June 12, 2012

284 Chapter 12 Server Security

The size of the key, in symmetric-key cryptography is a crucial factor
in determining the “strength” of a cipher. A cryptanalyst trying to de-
cipher an encrypted message could attempt to check all possible keys,
and the greater the number of possible keys, the longer it will take to
find the correct one. The size of keys today is measured by the number
of bits it takes to represent all possible keys, for instance the Blowfish,
CAST and IDEA algorithms use a 128 bit key, the triple-DES a 168
bit key. The DES encryption, the official American encryption stan-
dard, with its 56 bit key is considered woefully inadequate for strong
encryption by today’s standards.

Symmetric-key cryptography, has major advantages:

• It is very fast.

• If the key is large enough, it is extremely difficult to crack.

Unfortunately it also has one major flaw. For a sender and recipi-
ent to communicate securely using a symmetric-key cipher, they must
agree upon a key and keep it secret between themselves. If they are
in different physical locations, they must trust a secure communica-
tions medium, such as a courier. Anyone who intercepts the key in
transit can later read, modify, and forge all information encrypted
or authenticated with that key. Ensuring the secure transmission of
encryption keys is an expensive endeavour. In the 1970s financial insti-
tutions were expending large sums of money in secure courier services
entrusted with carrying encryption keys around the world.

The persistent problem with symmetric-key encryption is key distri-
bution: how do you get the key to the recipient without someone
intercepting it.

Asymmetric Key Encryption

The problem of key distribution was solved by asymmetric key cryp-
tography which is also known as public key cryptography. The idea
was first put forward by J.H. Ellis, of the British Secret Service in the
late 1960s, but was never made public (though the British did nothing
with it). The idea was independently proposed in 1975 by Whitfield
Diffie and Martin Hellman.

The idea behind public key encryption is to use a pair of keys for
encryption: information encrypted with one key can only be decrypted
by the other key—not by the encrypting key.

One key is made public (the public key) distributed to the world and
the other key remains private and never given to anyone else (the
private, or secret key). Anyone with a copy of the public key can then
encrypt information that can only be decrypted by the holder of the
corresponding private key. It is computationally unfeasible to deduce
the private key from the public key (if they are long enough!).

With public-key encryption the need for sender and receiver to share
secret keys via some secure channel is eliminated; all communications
involve only public keys, and no private key is ever transmitted or
shared.

c© USQ, June 12, 2012

12.6 Communication Security 285

Some examples of public-key crypto-systems are Elgamal (named for
its inventor, Taher Elgamal, RSA (named for its inventors, Ron Rivest,
Adi Shamir, and Leonard Adleman), and Diffie-Hellman.

Note Anything encrypted by the private key can be decrypted by the
public key. The encryption/decryption is symmetric—just the
use of the keys is asymmetric.

Encrypting with the private key means a recipient can ensure only
one person could have written it—as it can only be decrypted
with that person’s public key.

Example 12.27: The RSA algorithm is based on the fact that it is
easy to multiply two large prime numbers together, but hard to
factor them out of the product if they are unknown.

Key Generation
To create a public-private key pair using the RSA algorithm is
relatively simple:

i. Generate two large prime numbers p and q.
For this example we will use two small prime numbers, to be
secure two really large prime numbers are required.

We will use:

p = 197

q = 113

ii. Calculate

m = (p− 1)(q − 1)

= 196× 112

= 21952

iii. Calculate

n = pq

= 197× 113

= 22261

iv. Choose a small number d, that is relative prime to m.
When two numbers are relative prime, it means that the
largest number that can divide both (their greatest common
divisor) is 1.

Here we choose d = 5.

A simple method for finding d is to start at 2, incrementing
by one each time until an appropriate d is found.

c© USQ, June 12, 2012

286 Chapter 12 Server Security

(Euclid’s Algorithm can be used to find the greatest common
divisor of two numbers quickly and easily, but the details are
omitted here)

v. Find e, such that de = 1(mod m).
This means find an e such that when de is divided by m
the remainder is 1. One way of finding e is to rewrite the
the equation above as de = 1 + nm where n is any integer.
Rewriting this equation as e = (1 + nm)/d, we can work
through integer values of n until we find an integer solution
for e.

Doing that we find e = 8781.

(For large numbers a variation on Euclid’s Algorithm can be
used to quickly and easily find the e.)

vi. The keys are:

Public: (n,d)=(22261,5)
Private: (n,e)=(22261,8781)

At this stage the prime numbers q and p should be discarded.

Encryption
The message to be encrypted has to be a number less than the
smaller of p and q. However, at this point p and q are unknown,
and must remain unknown, so a number well below the minimum
can be published, without compromising security.

To encrypt a number M , the encryption formula is

E(M) = Md(mod n)

We will encrypt the character Q, which has the ASCII value 81.

E(M) = 815(mod 22261)

= 3486784401(mod 22261)

= 21710

So the encrypted value of Q is 21710.

Decryption
To decrypt a number E(M), the decryption formula is

M = E(M)e(mod n)

So decrypting the value 21710 we need to calculate

M = 217108781(mod 22261)

= 1621473118948704 . . . 00000000(mod 22261)

= 81

c© USQ, June 12, 2012

12.6 Communication Security 287

Raising 217108781 is problematic, the solution is a number with
38634 digits! (See the examples directory for the complete num-
ber.) Use can be made of the fact that modulo n of a number is
equal to multiplying together the modulo n of the factors of the
number. For example:

12345× 123456× 1234567(mod 11)

= (12345(mod 11)× 123456(mod 11)× 1234567(mod 11))(mod 11)

Public-key encryption seems to solve the main disadvantage of symmetric-
key encryption, unfortunately public-key encryption is extremely slow!
So most cryptographic systems combine the best features of both
symmetric-key and public-key cryptography. The hybrid system be-
comes a multistage process to encrypt a message:

(a) Compress the cleartext document. Data compression saves space
but more importantly, strengthens cryptographic security. Many
cryptanalysis techniques exploit patterns found in the cleartext to
break the cipher. Compression reduces these patterns, thereby
greatly enhancing resistance to cryptanalysis. This step is not
critical and can be bypassed.

(b) Generate a random session key, which is a one-time-only secret
key. Using one of the fast and secure symmetric-key encryp-
tion algorithms with this one-time-only key, encrypt the cleartext
message.

(c) Now the session key is encrypted using the recipient’s public key.

(d) Send the encrypted data and the encrypted key to the recipient.

The advantage of this encryption strategy is that the large cleartext
message is encrypted with the fast and secure symmetric-key encryp-
tion algorithm and the much smaller one-time-only random session key
is encrypted using the much slower (about 1000 times slower) secure
public-key algorithm.

12.6.3 Message Digest

A message digest is a compact “distillation” of your message. It is
similar to a “file checksum”. It can be thought of as a “fingerprint” of
the message or file. The message digest “represents” your message, in
such a way that if the message where altered in any way, a different
message digest would be computed from it. Every unique string has a
unique message digest.

The message digest is calculated using a one-way hash function. A
one-way hash function takes a string of variable length and produces
a representational string of fixed length, the hash value. Typically the
hash value is 128 or 160 bits long. Hash functions are chosen so that
it is computationally infeasible to find two distinct messages that will
hash to the same value.

c© USQ, June 12, 2012

288 Chapter 12 Server Security

The two most popular message digest algorithms are the Secure Hash
Algorithm (SHA) designed by the American National Institute of
Standards and Technology (NIST), and the MD5 algorithm by RSA.
The SHA produces an 160 bit hash value and the MD5 an 128 bit
value.

Example 12.28: The Linux system has an application called md5sum

(see the man page). This program will compute the MD5 hash
value for any file.

For example, the MD5 hash value of the sentence:

This program will compute the MD5 hash value for any file.

is in hexadecimal:

b4fe56571d9e2270f459aab6395f9155

Removing the fullstop at the end of the sentence, and the hash
value becomes

4245600a96891fbb0fb018d4cea8d0cd

One character change has produced a completely different hash
value.

When hash values are used to detect whether a message has been
altered, they are called Modification Detection Codes (MDCs).

When hash values have been calculated with a secret key added to
the message to be hashed they are known as Message Authentication
Codes (MACs)

Exercise 12.29: Read the man page for the md5sum application. Ex-
periment with the application creating MD5 hash values of sup-
plied strings.

Most Linux software available for download from the Internet also
has an MD5 checksum that can be downloaded as well. Why?

12.6.4 Digital Signatures

A major benefit of public key cryptography is that it provides a
method for employing digital signatures. Digital signatures enable
the recipient of a message to verify the authenticity of the messages
origin, and also verify if the information is intact. That is, public key
digital signatures provide authentication and data integrity. A digi-
tal signature also provides non-repudiation, that is the sender cannot
deny the message.

Digital signature’s make use of a feature of public-key cryptography:
cleartext encrypted with the private key can be decrypted with the
public key. The steps for adding a digital signature to a message are:

(a) Generate a hash value of the cleartext message.

(b) Encrypt the hash value with your private key.

(c) Append the encrypted hash value to the message.

c© USQ, June 12, 2012

12.6 Communication Security 289

(d) Send the message.

When the message and signature are received, the recipient

(a) generates a hash value of the received message.

(b) decrypts the your hash value sent with the message with your
public key.

(c) compares the two hash values.

(d) If they match the message is genuine.

As long as a secure hash value is used, there is no way to take the
signature from one message and attach it to another, or alter a signed
message in any way. The slightest change in a signed document will
produce a completely different hash value.

12.6.5 Digital Certificates

One issue with public key crypto-systems is that users must be con-
stantly vigilant to ensure that the public key they are using does in
fact belong to the person they are encrypting for. If someone where
to post a phony key with the name and user ID of the user’s intended
recipient, data encrypted to— and intercepted by—the true owner of
the phony key is now in the wrong hands. This type of an attack is
called, a man-in-the-middle attack.

In a public key environment, it is vital that you are assured that the
public key to which you are encrypting data is in fact the public key of
the intended recipient. Digital Certificates, or certs, simplify the task
of establishing whether a public key belongs to the purported owner.

A digital certificate is information included with a person’s public key
that helps others verify that a key is genuine. Digital certificates are
used to thwart attempts to substitute one person’s key for another.

A digital certificate consists of three things:

(a) A public key.

(b) Certificate information. That is, identity information about the
owner of the public key, such as name, user ID, organisation etc.

(c) One or more digital signatures.

The purpose of the digital signatures on a certificate is to state that
the certificate information has been attested to by some other person
or entity. The digital signature does not attest to the authenticity
of the certificate as a whole; it vouches only that the signed identity
information goes along with, or is bound to, the public key.

Implicit in certificates is the idea of a trusted third party, someone
who will sign the certificate. The trusted third party is known as a
Certificate Authority or CA, which is a person, group, department or
company, that is trusted to verify the integrity of the contents of the
certificate before signing the certificate with their private key.

c© USQ, June 12, 2012

290 Chapter 12 Server Security

Some internationally recognised certificate authorities are RSA, Verisign
and Thawte

12.6.6 The Transport Layer Security Protocol

All of the features of modern cryptography, symmetric keys, public
keys, hash values, and digital certificates, are employed to ensure se-
cure communications between the web client and the web server. The
Transport Layer Security (TLS) (which is based on its predecessor the
Secure Socket Layer (SSL)) is the most widely used secure protocol.

TLS/SSL protects data in two steps. In the first step, the client and
server perform a handshake. During the handshake process, they es-
tablish an agreed upon cryptographic methodology and exchange se-
cret keys. Next, TLS/SSL takes application data and encrypts it. At
the receiving end, this process is executed in reverse.

During the handshake process, the server sends the client its digital
certificate. The client checks the signature of the CA on the server’s
certificate, if it does not belong to one of the predefined list of CAs
the user is asked to accept or reject the server certificate.

If the certificate has been signed by a recognised CA or the user has
accepted the certificate, the client generates a secret key and encrypts
the key using the server’s public key contained within the certificate.
It then sends the encrypted key back to the server. Both client and
server now have the same secret key that they use to generate the
same secret symmetric-key and the same secret MAC key.

The data the server sends to the client is now compressed, encrypted
using the agreed symmetric-key algorithm and secret key, and the
server signs the data using a MAC. The client can reverse the process,
and verify the data received. Data sent by the client to the server is
also compressed, encrypted and signed.

The digital certificate ensures the identity of the server. The encryp-
tion of the data passed between the client and the server ensures pri-
vacy. Finally, the insertion of digital signatures into the data stream
ensures data integrity.

Exercise 12.30: Under Linux the TLS/SSL is supplied by the OpenSSL
package. OpenSSL is a library of routines that supply hash al-
gorithms, symmetric key encryption algorithms, asymmetric key
encryption algorithms and the routines for any application to
communicate via TLS/SSL.

The supplied application crypt (see the course web site) can
be used to encrypt and decrypt using the symmetric encryption
scheme Blowfish.

Study the code especially the library file encryption.c, and ex-
periment with the crypt application.

Why is the pass phrase you supply converted into an encryption
key using MD5?

c© USQ, June 12, 2012

12.7 Questions 291

Why is the output from the Blowfish encryption encoded using
Base64?

12.7 Questions

Short Answer Questions

Q. 12.31: What makes web sites vulnerable to malicious attack?

Q. 12.32: What is the major flaw in symmetric key encryption?

Q. 12.33: What are the security considerations for automatic direc-
tory listings?

Q. 12.34: What is access control?

Q. 12.35: What is a certificate authority?

Q. 12.36: Why is the order/deny order important?

Q. 12.37: Why do the order directives require an initial state?

Q. 12.38: Does someone in a group file need to be in the username
file?

Q. 12.39: How is access granted to a directory based on groups?

Q. 12.40: What is the difference between symmetric key encryption
and public key encryption?

Q. 12.41: What is the major flaw in public key encryption?

Q. 12.42: What is the difference between authentication and autho-
risation?

Q. 12.43: What is a hash value?

Q. 12.44: What feature(s) is it that the directive Limit is limiting?

Q. 12.45: Explain the concept of groups as it relates to access con-
figuration.

12.8 Further Reading and References

(a) Read the section in the Apache Manual Authentication, Autho-
rization, and Access Control

(b) The Apache documentation discusses alternative methods for
user authentication. See mod auth modules,

c© 2011 Leigh Brookshaw
Department of Mathematics and Computing, USQ.

c© USQ, June 12, 2012

292 Chapter 12 Server Security

c© USQ, June 12, 2012

	Preface
	Introduction
	The Internet
	Protocols
	IP Addresses
	Domain Names
	Port Numbers
	Clients and Servers
	The World Wide Web
	Uniform Resource Identifier
	Uniform Resource Locator
	Legal Characters in URLs
	URL Addressing

	Questions
	Further Reading and References

	I Client Side
	Extensible HyperText Markup Language
	Introduction
	HTML, XHTML and XML

	Structure of an XHTML document
	Preamble
	HTML Element
	HEAD Element
	Common Attributes
	BODY Element

	Block-Level Elements
	H1…H6 Elements
	P Element
	PRE Element
	BLOCKQUOTE Element
	ADDRESS Element
	List Elements
	HR Element (horizontal rule)
	Tables
	TABLE Element
	CAPTION Element
	TR Element
	TH and TD Elements
	Forms
	Frames

	Text-Level Elements
	Phrase Elements
	Subscripts and Superscripts
	Document Modification
	Font Elements
	Controlling Line Breaks

	Embedded Images
	IMG Element
	Iframe

	Hypertext Links
	A Element

	Unicode
	Exercises
	Questions
	Further Reading and References

	Cascading Style Sheets
	Content and Style
	Accessibility
	Including Style Commands in (X)HTML
	STYLE Element
	External Style Sheets
	Importing Style Sheets
	Inline Style

	Specifying Style Rules
	Selectors
	Precedence Rules
	Property URLs
	Property Units

	Font Properties
	Foreground and Background Properties
	Text Properties
	Bounding Box Properties
	Box Positioning Properties
	Classification Properties

	DIV and SPAN Elements
	Questions
	Further Reading and References

	Graphics
	Pixels and Colour
	Image Formats
	Raster Formats
	Vector Formats

	Images as Anchors
	Server-side Image Maps
	 Client-side image maps
	Creating map descriptions

	Questions
	Further Reading and References

	Web Design
	What is Web design?
	User-Centred Design
	Usability
	Common User Characteristics
	Web Conventions

	Accessibility
	Usability Guidelines
	Ten Good Design Ideas
	Ten Bad Design Ideas

	Questions
	Further Reading and References

	PHP: Hypertext Preprocessor
	Syntax
	Comments

	Variables
	Types
	True or False
	Strings
	Arrays

	Operators
	Arithmetic Operators
	Assignment Operator
	Comparison Operators
	Ternary Operator
	Increment/Decrement Operators
	Logical Operators
	Array Operators
	Operator Precedence

	Conditional Statements
	if…elsif…else
	Switch

	Looping
	while
	do…while
	for
	foreach

	Functions
	Function Arguments
	Variable Scope

	File Handling
	C-style file handling
	High-level file handling

	Debugging Scripts
	Builtin Functions
	String Functions
	Array Functions
	File Functions
	Variable Handling Functions
	Perl Regular Expression Functions
	Error and Debugging Functions

	Questions
	Further Reading and References

	II Server Side
	HyperText Transfer Protocol
	Request Phase
	The Request Method
	The Request Header
	The Request Data

	Response Phase
	Response Status Codes
	The Response Header
	The Response Data

	Questions
	Further Reading and References

	Multipurpose Internet Mail Extensions
	MIME types
	Base64 Encoding

	Content-type Header
	Servers and MIME typing
	Clients and MIME typing
	Questions
	Further Reading and References

	HTML Forms
	The Form element
	Form Input elements
	<INPUT TYPE="TEXT"…>
	<INPUT TYPE="PASSWORD"…>
	<INPUT TYPE="CHECKBOX"…>
	<INPUT TYPE="RADIO"…>
	<INPUT TYPE="SUBMIT"…>
	<INPUT TYPE="IMAGE"…>
	<INPUT TYPE="RESET"…>
	<INPUT TYPE="FILE"…>
	<INPUT TYPE="HIDDEN"…>

	SELECT element
	<OPTION…>

	TEXTAREA element
	Form Elements and CSS
	Questions
	Further Reading and References

	Server Scripts and the Common Gateway Interface
	Introduction
	Script Identification
	Communicating with Scripts
	Passing Parameters
	Passing Path Information
	HTML Input

	Communicating with Clients
	Content-type
	Location
	Dynamic Documents

	Common Gateway Interface (CGI)
	Environment Variables
	The GET method
	The POST method

	Debugging Scripts
	Saving State Information
	Within Fill-out Forms
	Within URLs
	Within Path Information
	Using Authentication
	Using Cookies

	Questions
	Further Reading and References

	Server Configuration
	Introduction
	Global Configuration Files
	Global Configuration Directives
	The Root Directories
	Virtual Document trees
	User Directories
	AccessFileName directive
	<Directory …> directive
	<Location …> directive
	AllowOverride directive

	Directory Access Control Files
	Options directive
	Redirection
	Directory Resources
	ErrorDocument Directive
	Encodings and Languages
	Handlers
	Imap Files

	Questions
	Further Reading and References

	Server Security
	Introduction
	Insecure Server Features
	Automatic Directory Listing
	Symbolic Links
	CGI Scripts
	User Directories
	Access Control Files
	Log Files
	File Permissions

	Server Security Features
	Authorisation Features
	IP/Hostname Access Control
	Configuring IP/Hostname Access Control

	Authentication Features
	User Authentication
	Configuring User Authentication

	Communication Security
	Encryption
	Cryptographic Algorithms
	Message Digest
	Digital Signatures
	Digital Certificates
	The Transport Layer Security Protocol

	Questions
	Further Reading and References

