

MISS9.TXT

```
+-----+
+ Basic Explosives by Milamber      +
+ Part I:                          +
+       How and Why                 +
+-----+
+ Thanx to the following:          +
+ The Lich      <- J.C. ->      +
+ The Gray Mouser  Mr. Roshto    +
+ The Rebel          +
+ The Motor City Madman          +
+ And countless others.....      +
+-----+
+ An Underground Library File      +
+-----+
```

Many people believe that making explosives is a highly dangerous task. In truth, however, the modern explosives are not that dangerous to make. Note: I said Modern. Nitroglycerin not included! Making T.N.T. is a fairly safe procedure whereas making Nitro is a dangerous process that should be done very carefully. The Secondary explosives are hard to make, but are the safest. The Primary explosives are used to detonate the Secondary explosives, and are much more sensitive. These should be made with extreme caution. I suggest you raid your local college library on explosives, AND most definitely take ALL chemistry classes offered by your school, Honors classes, if at all possible. Understand, however, the production of explosives is not a game!

How & Why Explosives Work

Explosives, are chemical (for the most part) substances that change SUDDENLY to hot gases when detonated in some manner. These gases expand with terrific force and exert pressure upon their surroundings. When ordinary gunpowder goes off in an enclosed space it increases the pressure within that space 6,000 times! High explosives, such as dynamite, T.N.T. and Nitroglycerin are far more powerful. Mercury fulminate, one of the most violent high explosives, can develop a pressure of 200 tons per square inch!

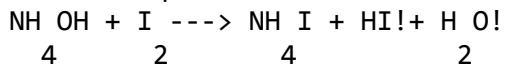
What causes this sudden release of gases? To understand this, we must understand that many liquids and solids are composed in whole or in part by gases. Water, for example, is composed of Hydrogen and Oxygen. Mercury fulminate is composed of of Mercury, Oxygen, Carbon and Nitrogen. Water is not explosive, while mercury fulminate is. This is because the hydrogen and oxygen are friendly to each other, they are linked by a strong chemical action and cannot be separated without energy. [A reaction that requires energy is referred to as an endothermic reaction] Mercury fulminate, however, is an unstable compound, and its components do not get along well together - they are constantly looking for an excuse to split. If struck or rubbed or pressed they fly apart very suddenly.

Instead of the solid Mercury Fulminate we now have two gases - nitrogen and carbon monoxide - and mercury vapor. These gases now occupy vastly more space

MISS9.TXT

than before. It is this sudden and violent expansion which causes the explosion.

From this knowledge, any substance which breaks up easily and suddenly, producing a large volume of gas, is an explosive. There are some, like Nitrogen Iodide that a fly could set it off. There are others that can be detonated by only, electricity, another explosive, fire, pressure, or some of these or all.


Broadly speaking, explosives may be of two kinds, detonating (i.e. Mercury Fulminate) or rapid-burning (i.e. Gunpowder). In a rapid-burning explosive, a flame starts at one point, and spreads rapidly over the entire mass. A detonating explosive, however, breaks its chemical bonds almost all at the same time - which is MUCH more violent. Some explosives exhibit both of these qualities - TNT, when lit, is not a very powerful explosive, but in response to a blasting cap, becomes EXTREMELY violent.

Explosives which are to be used for practical uses, cannot depend on the air for their supply of Oxygen. (Oxygen is required for combustion, remember?) This is why most explosives contain oxygen in some way. A few detonating explosives, such as Nitrogen Iodide, contain no oxygen, they rely on the heat generated by the break to cause the parts to expand.

Nitrogen & its Significance

Nitrogen is an unsocial element, and plays a key part to the forming of the unstable chemical bonds. It is usually introduced through the action of nitric acid, as a rule, mixed with sulphuric acid. Some compounds, containing Nitrogen already, may be mixed with other compounds to form an explosive. An example is Ammonium Iodide. This is a impure form of Nitrogen Iodide. The chemical equation is:

A chemistry student will tell you that the equation is unbalanced- and it is, except for the critical parts- the iodine (I₂) displaces the Hydroxide (OH) and forms the Ammonium Iodide(NH₄I). This leaves an Iodine atom and a Hydrogen atom, which rapidly combine with the hydrogen in the air (HI!) and the Oxygen and the Hydrogen in the air (H₂O). These two are given off as gases... The word equation for this is :

Ammonium Hydroxide + Iodine Crystals yields Ammonium Iodide + Hydrous Iodide + Steam

** Warning **

The above is a VERY sensitive explosive and making more than a cubic centimeter at a time is not advised. It is about as powerful, for an cubic inch, as an M-80.

Rules When Making Explosives:

MISS9.TXT

1. Make explosives in a dry, cool, quiet area that is free of disturbance.
2. Always wear gloves and goggles.
3. Treat all explosives like pressure sensitive H-Bombs, no matter what it is
4. Use Common sense, and follow directions, unless the directions don't make sense, if they don't, do NOT make that explosive
5. When detonating, it is preferable to use an electric detonator, to ensure control over the explosion
6. Test explosives in an unpopulated area. And from a SAFE distance

```
+-----+
+ That's all for now, Part II will +
+ deal with the formation of simple +
+ explosives. +
+-----+
+ Call: +
+ Arcadia (313)-565-2838 +
+ The Hole in the Wall (313)-383-4996+
+ Dark Alley Main (313)-386-5469 +
+ Marble Madness (619)-353-0970 +
+ Chessboard (313)-255-2456 +
+ Dark Alley ][ (313)-271-1095 +
+-----+
```

Disclaimer:

The authors of this file take no responsibility whatsoever for any use this information is put to. It is intended for information and educational uses only!!!!

--Milamber-
<-J.C.->
Mr. Roshto(Chem teacher)

Addendum: February 10, 1987

I'm not sure about the last formula, it may actually be 2 parts Ammonium to 1 part Iodine and it may form Hydrogen Peroxide(gas). In this case, you do not waste any Iodine, so I would try this one first.

Downloaded from P-80 Systems.....