GPG(1) GNU Privacy Guard 2.4 GPG(1)

NAME
gpg - OpenPGP encryption and signing tool

SYNOPSIS
gpg [--homedir dir] [--optionsfile] [options] command [args]

DESCRIPTION
gpg is the OpenPGP part of the GNU Privacy Guard (GnuPG). It isatool to provide digital encryption
and signing services using the OpenPGP standard. gpg features complete key management and all the
bells and whistles you would expect from a full OpenPGP implementation.

There are two main versions of GnuPG: GnuPG 1.x and GnuPG 2.x. GnuPG 2.x supports modern
encryption algorithms and thus should be preferred over GnuPG 1.x. Y ou only need to use GnuPG 1.x
if your platform doesn’t support GnuPG 2.x, or you need support for some features that GnuPG 2.x has
deprecated, e.g., decrypting data created with PGP-2 keys.

If you are looking for version 1 of GnuPG, you may find that version installed under the name gpgl.

RETURN VALUE
The program returns O if there are no severe errors, 1 if at least a signature was bad, and other error
codes for fatal errors.

Note that signature verification requires exact knowledge of what has been signed and by whom it has
been signed. Using only the return code is thus not an appropriate way to verify a signature by a script.
Either make proper use or the status codes or use the gpgv tool which has been designed to make
signature verification easy for scripts.

WARNINGS
Use agood password for your user account and make sure that all security issues are aways fixed on
your machine. Also employ diligent physical protection to your machine. Consider to use agood

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

passphrase as a last resort protection to your secret key in the case your machine gets stolen. Itis
important that your secret key is never leaked. Using an easy to carry around token or smartcard with
the secret key is often a advisable.

If you are going to verify detached signatures, make sure that the program knows about it; either give
both filenames on the command line or use ‘-’ to specify STDIN.

For scripted or other unattended use of gpg make sure to use the machine-parseabl e interface and not
the default interface which isintended for direct use by humans. The machine-parseable interface
provides a stable and well documented API independent of the locale or future changes of gpg. To
enabl e this interface use the options --with-colons and --status-fd. For certain operations the option
--command-fd may come handy too. See this man page and the file ‘DETAILS for the specification

of theinterface. Note that the GnuPG ‘‘info’’ pages as well as the PDF version of the GnuPG manual
features a chapter on unattended use of GnuPG. As an aternative the library GPGME can be used as a
high-level abstraction on top of that interface.

INTEROPERABILITY
GnuPG triesto be a very flexible implementation of the OpenPGP standard. In particular, GnuPG
implements many of the optional parts of the standard, such as the SHA-512 hash, and the ZLIB and
BZIP2 compression algorithms. It isimportant to be aware that not all OpenPGP programs implement
these optional algorithms and that by forcing their use viathe --cipher-algo, --digest-algo,
--cert-digest-algo, or --compress-algo optionsin GhuPG, it is possible to create a perfectly valid
OpenPGP message, but one that cannot be read by the intended recipient.

There are dozens of variations of OpenPGP programs available, and each supports adlightly different
subset of these optional algorithms. For example, until recently, no (unhacked) version of PGP
supported the BLOWFISH cipher algorithm. A message using BLOWFISH simply could not be read
by a PGP user. By default, GnuPG uses the standard OpenPGP preferences system that will always do
the right thing and create messages that are usable by all recipients, regardless of which OpenPGP
program they use. Only override this safe default if you really know what you are doing.

If you absolutely must override the safe default, or if the preferences on agiven key areinvalid for
some reason, you are far better off using the --pgp6, --pgp7, or --pgp8 options. These options are safe
as they do not force any particular algorithms in violation of OpenPGP, but rather reduce the available
algorithmsto a"PGP-safe" list.

COMMANDS
Commands are not distinguished from options except for the fact that only one command is allowed.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

Generally speaking, irrelevant options are silently ignored, and may not be checked for correctness.
gpg may be run with no commands. In this case it will print awarning perform a reasonable action

depending on the type of fileit is given asinput (an encrypted message is decrypted, asignature is

verified, afile containing keysis listed, etc.).

If you run into any problems, please add the option --ver bose to the invocation to see more diagnostics.

Commands not specific to the function

--version

Print the program version and licensing information. Note that you cannot abbreviate this
command.

--help
-h Print a usage message summarizing the most useful command-line options. Note that you cannot
arbitrarily abbreviate this command (though you can use its short form -h).

--warranty
Print warranty information.

--dump-options
Print alist of all available options and commands. Note that you cannot abbreviate this command.

Commandsto select the type of operation

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

--sign

-s Sign amessage. This command may be combined with --encrypt (to sign and encrypt a message),
--symmetric (to sign and symmetrically encrypt a message), or both --encrypt and --symmetric (to
sign and encrypt a message that can be decrypted using a secret key or a passphrase). The signing
key is chosen by default or can be set explicitly using the --local-user and --default-key options.

--clear-sign

--clearsign
Make a cleartext signature. The content in a cleartext signature is readable without any special
software. OpenPGP software is only needed to verify the signature. cleartext signatures may
modify end-of-line whitespace for platform independence and are not intended to be reversible.
The signing key is chosen by default or can be set explicitly using the --local-user and
--default-key options.

--detach-sign
-b Make adetached signature.

--encrypt

-e Encrypt datato one or more public keys. This command may be combined with --sign (to sign and
encrypt a message), --symmetric (to encrypt a message that can be decrypted using a secret key or
apassphrase), or --sigh and --symmetric together (for a signed message that can be decrypted using
a secret key or apassphrase). --recipient and related options specify which public keysto use for
encryption.

--Symmetric

-c Encrypt with a symmetric cipher using a passphrase. The default symmetric cipher used is
AES-128, but may be chosen with the --cipher-algo option. This command may be combined with
--sign (for asigned and symmetrically encrypted message), --encrypt (for a message that may be
decrypted via a secret key or a passphrase), or --sign and --encrypt together (for a signed message
that may be decrypted via a secret key or a passphrase). gpg caches the passphrase used for
symmetric encryption so that a decrypt operation may not require that the user needs to enter the
passphrase. The option --no-symkey-cache can be used to disable this feature.

--store

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

Store only (make asimple literal data packet).

--decrypt

-d Decrypt thefile given on the command line (or STDIN if no fileis specified) and write it to
STDOUT (or the file specified with --output). If the decrypted file is signed, the signature is also
verified. This command differs from the default operation, as it never writes to the filename which
isincluded in thefile and it rejectsfiles that don’t begin with an encrypted message.

--verify
Assume that the first argument is asigned file and verify it without generating any output. With
no arguments, the signature packet is read from STDIN. If only one argument is given, the
specified file is expected to include a complete signature.

With more than one argument, the first argument should specify afile with a detached signature
and the remaining files should contain the signed data. To read the signed datafrom STDIN, use
‘-" asthe second filename. For security reasons, a detached signature will not read the signed
material from STDIN if not explicitly specified.

Note: If the option --batch is not used, gpg may assume that a single argument isafile with a
detached signature, and it will try to find a matching data file by stripping certain suffixes. Using
this historical feature to verify a detached signature is strongly discouraged; you should always
specify the datafile explicitly.

Note: When verifying a cleartext signature, gpg verifies only what makes up the cleartext signed
data and not any extra data outside of the cleartext signature or the header lines directly following
the dash marker line. The option --output may be used to write out the actual signed data, but there
are other pitfalls with thisformat aswell. It is suggested to avoid cleartext signaturesin favor of
detached signatures.

Note: With option --batch he verification of signatures stops at the first bad signature. Thisisa
safe default for unattended processing but sometimes a status for all signaturesis needed. To
override this early bailout use the option --proc-all-sigs.

Note: To check whether afile was signed by a certain key the option --assert-signer can be used.

As an dternative the gpgv tool can be used. gpgv is designed to compare signed data against alist
of trusted keys and returns with success only for agood signature. It hasits own manua page.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

--multifile
This modifies certain other commands to accept multiple files for processing on the command line
or read from STDIN with each filename on a separate line. This allows for many filesto be
processed at once. --multifile may currently be used along with --verify, --encrypt, and --decrypt.
Note that --multifile --verify may not be used with detached signatures.

--verify-files
Identical to --multifile --verify.

--encrypt-files
Identical to --multifile --encrypt.

--decrypt-files
Identical to --multifile --decrypt.

--list-keys

-k

--list-public-keys
List the specified keys. If no keys are specified, then al keys from the configured public keyrings
are listed.

Never use the output of this command in scripts or other programs. The output is intended only for
humans and its format is likely to change. The --with-colons option emits the output in a stable,
machine-parseabl e format, which isintended for use by scripts and other programs.

--list-secret-keys

-K List the specified secret keys. 1f no keys are specified, then all known secret keys arelisted. A #
after theinitial tags sec or ssh meansthat the secret key or subkey is currently not usable. We also
say that this key has been taken offline (for example, a primary key can be taken offline by
exporting the key using the command --export-secr et-subkeys). A > after these tags indicate that
the key is stored on asmartcard. See also --list-keys.

--check-signatures
--check-sigs

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

Same as --list-keys, but the key signatures are verified and listed too. Note that for performance
reasons the revocation status of a signing key is not shown. This command has the same effect as
using --list-keys with --with-sig-check.

The status of the verification isindicated by aflag directly following the "sig" tag (and thus before
the flags described below. A "!" indicates that the signature has been successfully verified, a"-"
denotes a bad signature and a"%" isused if an error occurred while checking the signature (e.g. a
non supported algorithm). Signatures where the public key is not available are not listed; to see
their keyids the command --list-sigs can be used.

For each signature listed, there are several flags in between the signature status flag and keyid.
These flags give additional information about each key signature. From left to right, they are the
numbers 1-3 for certificate check level (see --ask-cert-level), "L" for alocal or non-exportable
signature (see --Isign-key), "R" for a nonRevocabl e signature (see the --edit-key command
"nrsign”), "P" for asignature that contains a policy URL (see --cert-palicy-url), "N" for asignature
that contains a notation (see --cert-notation), " X" for an eXpired signature (see --ask-cert-expire),
and the numbers 1-9 or "T" for 10 and above to indicate trust signature levels (see the --edit-key
command "tsign").

--locate-keys

--locate-external-keys
L ocate the keys given as arguments. This command basically uses the same algorithm as used
when locating keys for encryption and may thus be used to see what keys gpg might use. In
particular external methods as defined by --auto-key-locate are used to locate akey if the
arguments comain valid mail addresses. Only public keys are listed.

The variant --locate-exter nal-keys does not consider alocally existing key and can thus be used to
force the refresh of akey viathe defined external methods. If afingerprint is given and and the
methods defined by --auto-key-locate define LDAP servers, the key is fetched from these
resources; defined non-L DAP keyservers are skipped.

--show-keys
This commands takes OpenPGP keys as input and prints information about them in the same way
the command --list-keys does for locally stored key. In addition the list options
show-unusable-uids, show-unusable-subkeys, show-notations and show-policy-urlsare aso
enabled. Asusua for automated processing, this command should be combined with the option

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

--with-colons.

--fingerprint
List all keys (or the specified ones) aong with their fingerprints. Thisis the same output as
--list-keys but with the additional output of aline with the fingerprint. May also be combined with
--check-signatures. If thiscommand is given twice, the fingerprints of all secondary keys are listed
too. This command a so forces pretty printing of fingerprintsif the keyid format has been set to

"none".

--list-packets
List only the sequence of packets. This command is only useful for debugging. When used with
option --ver bose the actual MPI values are dumped and not only their lengths. Note that the output

of this command may change with new releases.

--edit-card

--card-edit
Present a menu to work with a smartcard. The subcommand "help" provides an overview on
available commands. For a detailed description, please see the Card HOWTO at
https://gnupg.org/documentati on/howtos.html#GnuPG-cardHOWTO . Please note that the
command "openpgp"” can be used to switch to the OpenPGP application of cards which by default

are presenting another application (e.g. PIV).

--card-status
Show the content of the smart card.

--change-pin
Present a menu to allow changing the PIN of a smartcard. This functionality is aso available as the
subcommand "passwd" with the --edit-card command.

--delete-keys name
Remove key from the public keyring. In batch mode either --yesis required or the key must be
specified by fingerprint. Thisis a safeguard against accidental deletion of multiple keys. If the
exclamation mark syntax is used with the fingerprint of a subkey only that subkey is deleted; if the

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

exclamation mark is used with the fingerprint of the primary key the entire public key is deleted.

--delete-secr et-keys name
Remove key from the secret keyring. In batch mode the key must be specified by fingerprint. The
option --yes can be used to advise gpg-agent not to request a confirmation. This extra pre-caution
is done because gpg can't be sure that the secret key (as controlled by gpg-agent) is only used for
the given OpenPGP public key. If the exclamation mark syntax is used with the fingerprint of a
subkey only the secret part of that subkey is deleted; if the exclamation mark is used with the
fingerprint of the primary key only the secret part of the primary key is deleted.

--delete-secr et-and-public-key name
Same as --delete-key, but if a secret key exists, it will be removed first. In batch mode the key must

be specified by fingerprint. The option --yes can be used to advise gpg-agent not to request a
confirmation.

--export
Either export all keys from all keyrings (default keyring and those registered via option --keyring),
or if at least one name is given, those of the given name. The exported keys are written to
STDOUT or to the file given with option --output. Use together with --armor to mail those keys.

--send-keys keyl Ds
Similar to --export but sends the keysto a keyserver. Fingerprints may be used instead of key IDs.
Don’t send your complete keyring to a keyserver --- select only those keys which are new or
changed by you. If no keylDs are given, gpg does nothing.

Take care: Keyservers are by design write only systems and thusit is not possible to ever delete
keys once they have been send to a keyserver.

--export-secr et-keys

--export-secr et-subkeys
Same as --export, but exports the secret keysinstead. The exported keys are written to STDOUT
or to the file given with option --output. This command is often used aong with the option
--armor to allow for easy printing of the key for paper backup; however the external tool paperkey

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

does a better job of creating backups on paper. Note that exporting a secret key can be a security
risk if the exported keys are sent over an insecure channel.

The second form of the command has the special property to render the secret part of the primary
key useless; thisis a GNU extension to OpenPGP and other implementations can not be expected
to successfully import such akey. Itsintended useisin generating afull key with an additional
signing subkey on a dedicated machine. This command then exports the key without the primary
key to the main machine.

GnuPG may ask you to enter the passphrase for the key. Thisisrequired, because theinternal
protection method of the secret key is different from the one specified by the OpenPGP protocol.

--export-ssh-key
This command is used to export akey in the OpenSSH public key format. It requiresthe
specification of one key by the usual means and exports the latest valid subkey which has an
authentication capability to STDOUT or to the file given with option --output. That output can
directly be added to ssh’'s ‘authorized key' file.

By specifying the key to export using akey ID or afingerprint suffixed with an exclamation mark
(1), aspecific subkey or the primary key can be exported. This does not even require that the key
has the authentication capability flag set.

--import

--fast-import
Import/merge keys. This adds the given keys to the keyring. The fast version is currently just a
synonym.

There are afew other options which control how this command works. Most notable hereisthe

--impor t-options mer ge-only option which does not insert new keys but does only the merging of
new signatures, user-1Ds and subkeys.

--receive-keys keylDs
--recv-keys keylDs
Import the keys with the given keyl Ds from a keyserver.

--refresh-keys

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

Request updates from a keyserver for keys that already exist on the local keyring. Thisis useful for
updating a key with the latest signatures, user I1Ds, etc. Calling this with no arguments will refresh
the entire keyring.

--sear ch-keys names
Search the keyserver for the given names. Multiple names given here will be joined together to
create the search string for the keyserver. Note that keyservers search for namesin a different and
simpler way than gpg does. The best choiceisto use amail address. Due to data privacy reasons
keyservers may even not even allow searching by user id or mail address and thus may only return
results when being used with the --r ecv-key command to search by key fingerprint or keyid.

--fetch-keys URIs
Retrieve keys located at the specified URIs. Note that different installations of GnuPG may
support different protocols (HTTP, FTP, LDAP, etc.). When using HTTPS the system provided
root certificates are used by this command.

--update-trustdb
Do trust database maintenance. This command iterates over al keys and builds the Web of Trust.
Thisis an interactive command because it may have to ask for the "ownertrust” values for keys.
The user hasto give an estimation of how far she trusts the owner of the displayed key to correctly
certify (sign) other keys. GhuPG only asks for the ownertrust value if it has not yet been assigned
to akey. Using the --edit-key menu, the assigned value can be changed at any time.

--check-trustdb
Do trust database maintenance without user interaction. From time to time the trust database must
be updated so that expired keys or signatures and the resulting changes in the Web of Trust can be
tracked. Normally, GnuPG will calculate when thisis required and do it automatically unless
--no-auto-check-trustdb is set. This command can be used to force atrust database check at any
time. The processing isidentical to that of --update-trustdb but it skips keys with a not yet defined
"ownertrust”.

For use with cron jobs, this command can be used together with --batch in which case the trust

database check is done only if a check is needed. To force arun even in batch mode add the option
--yes.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

--export-ownertrust
Send the ownertrust values to STDOUT. Thisis useful for backup purposes as these values are the
only ones which can’'t be re-created from a corrupted trustdb. Example:
gpg --export-ownertrust > otrust.txt

--impor t-ownertrust

Update the trustdb with the ownertrust values stored in files (or STDIN if not given); existing
values will be overwritten. In case of a severely damaged trustdb and if you have a recent backup
of the ownertrust values (e.g. in thefile ‘otrust.txt’), you may re-create the trustdb using these
commands:

cd ~/.gnupg

rm trustdb.gpg

gpg --import-ownertrust < otrust.txt

--rebuild-keydb-caches
When updating from version 1.0.6 to 1.0.7 this command should be used to create signature caches
in the keyring. It might be handy in other situations too.

--print-md algo

--print-mds
Print message digest of algorithm algo for al given filesor STDIN. With the second form (or a
deprecated "*" for algo) digests for all available algorithms are printed.

--gen-random 0]1]2|16]30 count
Emit count random bytes of the given quality level 0, 1 or 2. If count is not given or zero, an
endless sequence of random bytes will be emitted. If used with --armor the output will be base64
encoded. The specia level 16 uses aquality level of 1 and outputs an endless stream of hex-
encoded octets. The special level 30 outputs random as 30 zBase-32 characters.

--gen-prime mode bits
Use the source, Luke :-). The output format is subject to change with any release.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

--enarmor

--dearmor
Pack or unpack an arbitrary input into/from an OpenPGP ASCII armor. Thisisa GnuPG
extension to OpenPGP and in general not very useful. The --dearmor command can also be used
to dearmor PEM armors.

--unwrap
This option maodifies the command --decrypt to output the original message with the encryption
layer removed. Thus the output will be an OpenPGP data structure which often means a signed

OpenPGP message. Note that this option may or may not remove a compression layer whichis
often found beneath the encryption layer.

--tofu-policy {auto]good|unknown|bad|ask} keys
Set the TOFU policy for al the bindings associated with the specified keys. For more information
about the meaning of the policies, see: [trust-model-tofu]. The keys may be specified either by
their fingerprint (preferred) or their keyid.

How to manage your keys

This section explains the main commands for key management.

--quick-generate-key user-id [algo [usage [expir€]]]

--quick-gen-key
Thisis asimple command to generate a standard key with one user id. In contrast to
--gener ate-key the key is generated directly without the need to answer a bunch of prompts.

Unless the option --yesis given, the key creation will be canceled if the given user id already exists
in the keyring.

If invoked directly on the console without any specia options an answer to a*‘ Continue?’ style
confirmation prompt is required. In case the user id already existsin the keyring a second prompt

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

to force the creation of the key will show up.

If algo or usage are given, only the primary key is created and no prompts are shown. To specify
an expiration date but still create a primary and subkey use ‘‘default’’ or ‘*future-default’” for algo
and ‘*default’’ for usage. For adescription of these optional arguments see the command
--quick-add-key. The usage accepts also the value *“cert’” which can be used to create a
certification only primary key; the default is to a create certification and signing key.

The expire argument can be used to specify an expiration date for the key. Severa formats are
supported; commonly the ISO formats**YYYY-MM-DD"’ or ““YYYYMMDDThhmmss'’ are
used. To makethe key expirein N seconds, N days, N weeks, N months, or N years use
““seconds=N’’", “‘Nd’’, ““Nw’’, ““Nm’’, or *‘Ny’’ respectively. Not specifying avalue, or using
“*-" resultsin akey expiring in areasonable default interval. Thevalues‘‘never’’, **none’’ can be
used for no expiration date.

If this command is used with --batch, --pinentry-mode has been set to loopback, and one of the
passphrase options (--passphrase, --passphrase-fd, or --passphrase-file) is used, the supplied
passphrase is used for the new key and the agent does not ask for it. To create a key without any
protection --passphrase’’ may be used.

To create an OpenPGP key from the keys available on the currently inserted smartcard, the special
string ‘*card’’ can be used for algo. If the card features an encryption and a signing key, gpg will
figure them out and creates an OpenPGP key consisting of the usual primary key and one subkey.
Thisworks only with certain smartcards. Note that the interactive --full-gen-key command allows
one to do the same but with greater flexibility in the selection of the smartcard keys.

Note that it is possible to create a primary key and a subkey using non-default algorithms by using
“‘default’” and changing the default parameters using the option --default-new-key-algo.

--quick-set-expire fpr expire [*|subfprs]
With two arguments given, directly set the expiration time of the primary key identified by fpr to
expire. To remove the expiration time O can be used. With three arguments and the third given as
an asterisk, the expiration time of all non-revoked and not yet expired subkeys are set to expire.
With more than two arguments and alist of fingerprints given for subfprs, al non-revoked subkeys
matching these fingerprints are set to expire.

--quick-add-key fpr [algo [usage [expir€]]]

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

Directly add a subkey to the key identified by the fingerprint fpr. Without the optional arguments
an encryption subkey isadded. If any of the arguments are given amore specific subkey is added.

algo may be any of the supported algorithms or curve names given in the format as used by key
listings. To usethe default algorithm the string *“ default’” or **-’’ can be used. Supported
algorithmsare*‘rsa’, *‘dsa’, “‘elg’’, **ed25519"’, ‘*cv25519'’, and other ECC curves. For
example the string *‘rsa’ adds an RSA key with the default key length; astring *‘ rsa4096’’
requests that the key length is 4096 bits. The string *‘future-default’’ is an aias for the algorithm
which will likely be used as default algorithm in future versions of gpg. To list the supported ECC
curves the command gpg --with-colons --list-config curve can be used.

Depending on the given algo the subkey may either be an encryption subkey or a signing subkey.
If an algorithm is capable of signing and encryption and such a subkey is desired, a usage string
must be given. Thisstring iseither ‘*default’” or **-'’ to keep the default or acomma delimited list
(or space delimited list) of keywords: ‘‘sign’’ for asigning subkey, ‘‘auth’’ for an authentication
subkey, and ‘‘encr’’ for an encryption subkey (‘‘encrypt’’ can be used as aliasfor ‘‘encr’’). The
valid combinations depend on the algorithm.

The expire argument can be used to specify an expiration date for the key. Several formats are
supported; commonly the ISO formats**YYYY-MM-DD’’ or *“YYYYMMDDThhmmss'’ are
used. To make the key expirein N seconds, N days, N weeks, N months, or N years use
“‘seconds=N’", *“‘Nd'", ““Nw’’, *““Nm’’, or **Ny’’ respectively. Not specifying avalue, or using
“*-"" results in akey expiring in areasonable default interval. The values*‘never’’, *‘none’’ can be
used for no expiration date.

--quick-add-adsk fpr adskfpr
Directly add an Additional Decryption Subkey to the key identified by the fingerprint fpr. adskfpr
isthe fingerprint of another key’s encryption subkey. A subkey is commonly used here because by
default a primary key has no encryption capability. Use the option --with-subkey-finger print with
alist command to display the subkey fingerprints. If the string "default” is used for adskfpr all
missing ADSK s configured with --default-new-key-adsk are added.

--generate-key

--gen-key
Generate anew key pair using the current default parameters. Thisis the standard command to
create anew key. In addition to the key arevocation certificate is created and stored in the
‘openpgp-revocs.d’ directory below the GnuPG home directory.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

--full-gener ate-key

--full-gen-key
Generate anew key pair with dialogs for all options. Thisis an extended version of
--gener ate-key.

There is also afeature which allows you to create keys in batch mode. See the manual section
“*Unattended key generation’’ on how to usethis.

--gener ate-revocation name

--gen-revoke name
Generate arevocation certificate for the complete key. To only revoke a subkey or a key signature,
use the --edit command.

This command merely creates the revocation certificate so that it can be used to revoke the key if
that is ever needed. To actually revoke a key the created revocation certificate needs to be merged
with the key to revoke. Thisisdone by importing the revocation certificate using the --import
command. Then the revoked key needs to be published, which is best done by sending the key to a
keyserver (command --send-key) and by exporting (--export) it to afile which is then send to
frequent communication partners.

--gener ate-designated-revocation name

--desig-revoke name
Generate a designated revocation certificate for akey. This alows auser (with the permission of
the keyholder) to revoke someone else’ s key.

--edit-key
Present a menu which enables you to do most of the key management related tasks. It expectsthe
specification of akey on the command line.

uidn
Toggle selection of user 1D or photographic user ID with index n. Use* to select all and O to
deselect all.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

key n
Toggle selection of subkey with index nor key ID n. Use* to select all and 0 to deselect all.

sign
Make a signature on key of user name. If the key is not yet signed by the default user (or the
users given with -u), the program displays the information of the key again, together with its
fingerprint and asks whether it should be signed. This question is repeated for all users
specified with -u.

Isign
Same as"sign” but the signature is marked as non-exportable and will therefore never be used
by others. This may be used to make keys valid only in the local environment.

nrsign
Same as "sign" but the signature is marked as non-revocable and can therefore never be
revoked.

tsign
Make atrust signature. Thisis a signature that combines the notions of certification (like a
regular signature), and trust (like the "trust" command). It is generally useful in distinct
communities or groups to implement the concept of a Trusted Introducer. For more
information please read the sections *‘ Trust Signature’’ and ‘* Regular Expression’” in
RFC-4880.

Note that "I" (for local / non-exportable), "nr" (for non-revocable, and "t" (for trust) may be freely
mixed and prefixed to "sign" to create a signature of any type desired.

If the option --only-sign-text-ids is specified, then any non-text based user ids (e.g., photo IDs) will not
be selected for signing.

delsig
Delete a signature. Note that it is not possible to retract a signature, once it has been send to
the public (i.e. to akeyserver). Inthat case you better userevsig.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

revsig
Revoke a signature. For every signature which has been generated by one of the secret keys,
GnuPG asks whether arevocation certificate should be generated.

check
Check the signatures on all selected user IDs. With the extra option selfsig only self-
signatures are shown.

adduid
Create an additional user ID.

addphoto
Create a photographic user ID. Thiswill prompt for a JPEG file that will be embedded into the
user ID. Note that avery large JPEG will make for avery large key. Also note that some
programs will display your JPEG unchanged (GnuPG), and some programs will scaleit to fit
in adialog box (PGP).

showphoto
Display the selected photographic user ID.

deluid
Delete auser ID or photographic user ID. Notethat it is not possible to retract a user id, once
it has been send to the public (i.e. to akeyserver). Inthat case you better use revuid.

revuid
Revoke auser 1D or photographic user ID.

primary
Flag the current user id as the primary one, removes the primary user id flag from all other
user ids and sets the timestamp of all affected self-signatures one second ahead. Note that
setting a photo user 1D as primary makes it primary over other photo user IDs, and setting a
regular user ID as primary makesit primary over other regular user IDs.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

keyserver
Set apreferred keyserver for the specified user ID(s). This allows other users to know where
you prefer they get your key from. See --keyser ver-options honor -keyser ver -ur | for more on
how thisworks. Setting avalue of "none" removes an existing preferred keyserver.

notation
Set a name=value notation for the specified user I1D(s). See --cert-notation for more on how
thisworks. Setting avalue of "none" removes all notations, setting a notation prefixed with a
minus sign (-) removes that notation, and setting a notation name (without the =value) prefixed
with aminus sign removes all notations with that name.

pr ef
List preferences from the selected user I1D. This shows the actual preferences, without
including any implied preferences.

showpr ef
More verbose preferences listing for the selected user ID. This shows the preferences in effect
by including the implied preferences of 3DES (cipher), SHA-1 (digest), and Uncompressed
(compression) if they are not already included in the preference list. In addition, the preferred
keyserver and signature notations (if any) are shown.

setpref string
Set the list of user ID preferencesto string for all (or just the selected) user |Ds. Calling setpref
with no arguments sets the preference list to the default (either built-in or set via
--default-preference-list), and calling setpref with "none" as the argument sets an empty
preference list. Use gpg --version to get alist of available algorithms. Note that while you can
change the preferences on an attribute user 1D (aka "photo ID"), GnuPG does not select keys
via attribute user 1Ds so these preferences will not be used by GnuPG. Note that an
unattended version of this command is available as --quick-update-pr ef.

When setting preferences, you should list the algorithms in the order which you'd like to see
them used by someone else when encrypting a message to your key. If you don’t include
3DES, it will be automatically added at the end. Note that there are many factors that go into
choosing an algorithm (for example, your key may not be the only recipient), and so the
remote OpenPGP application being used to send to you may or may not follow your exact
chosen order for agiven message. It will, however, only choose an algorithm that is present

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

on the preference list of every recipient key. See also the INTEROPERABILITY WITH
OTHER OPENPGP PROGRAMS section below.

addkey
Add a subkey to this key.

addcardkey
Generate asubkey on a card and add it to this key.

keytocard
Transfer the selected secret subkey (or the primary key if no subkey has been selected) to a
smartcard. The secret key in the keyring will be replaced by a stub if the key could be stored
successfully on the card and you use the save command later. Only certain key types may be
transferred to the card. A sub menu allows you to select on what card to store the key. Note
that it is not possible to get that key back from the card - if the card gets broken your secret
key will belost unless you have a backup somewhere.

bkuptocard file
Restore the given file to a card. This command may be used to restore a backup key (as
generated during card initialization) to anew card. In almost all casesthiswill be the
encryption key. Y ou should use this command only with the corresponding public key and
make sure that the file given as argument is indeed the backup to restore. Y ou should then
select 2 to restore as encryption key. You will first be asked to enter the passphrase of the
backup key and then for the Admin PIN of the card.

keytotpm
Transfer the selected secret subkey (or the primary key if no subkey has been selected) to
TPM form. The secret key in the keyring will be replaced by the TPM representation of that
key, which can only be read by the particular TPM that created it (so the keyfile now becomes
locked to the laptop containing the TPM). Only certain key types may be transferred to the
TPM (all TPM 2.0 systems are mandated to have the rsa2048 and nistp256 algorithms but
newer TPMs may have more). Note that the key itself is not transferred into the TPM, merely
encrypted by the TPM in-place, so if the keyfileis deleted, the key will belost. Once
transferred to TPM representation, the key file can never be converted back to non-TPM form
and the key will die when the TPM does, so you should first have a backup on secure offline

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

storage of the actual secret key file before conversion. It is essential to use the physical
system TPM that you have rw permission on the TPM resource manager device
(/dev/tpmrm0). Usually this means you must be a member of the tss group.

delkey
Remove a subkey (secondary key). Note that it is hot possible to retract a subkey, onceit has
been send to the public (i.e. to akeyserver). Inthat case you better userevkey. Also note that
this only deletes the public part of akey.

revkey
Revoke a subkey.

expire
Change the key or subkey expiration time. If asubkey is selected, the expiration time of this
subkey will be changed. With no selection, the key expiration of the primary key is changed.

trust
Change the owner trust value for the key. This updates the trust-db immediately and no saveis
required.

disable
enable
Disable or enable an entire key. A disabled key can not normally be used for encryption.

addrevoker
Add adesignated revoker to the key. This takes one optional argument: "sensitive”. If a
designated revoker is marked as sensitive, it will not be exported by default (see export-
options).

addadsk
Add an Additional Decryption Subkey. The user is asked to enter the fingerprint of another
encryption subkey. Note that the exact fingerprint of another key’s encryption subkey needs
to be entered. Thisis because commonly the primary key has no encryption capability. Use

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

the option --with-subkey-finger print with alist command to display the subkey fingerprints.

passwd
Change the passphrase of the secret key.

toggle
Thisis dummy command which exists only for backward compatibility.

clean
Compact (by removing all signatures except the selfsig) any user 1D that is no longer usable
(e.g. revoked, or expired). Then, remove any signatures that are not usable by the trust
calculations. Specifically, thisremoves any signature that does not validate, any signature that
is superseded by alater signature, revoked signatures, and signatures issued by keysthat are
not present on the keyring.

minimize
Make the key as small as possible. This removes all signatures from each user 1D except for
the most recent self-signature.

change-usage
Change the usage flags (capabilities) of the primary key or of subkeys. These usage flags (e.g.
Certify, Sign, Authenticate, Encrypt) are set during key creation. Sometimesit is useful to
have the opportunity to change them (for example to add Authenticate) after they have been
created. Please take care when doing this; the allowed usage flags depend on the key
algorithm.

cross-certify
Add cross-certification signatures to signing subkeys that may not currently have them. Cross-
certification signatures protect against a subtle attack against signing subkeys. See
--require-cross-certification. All new keys generated have this signature by default, so this
command is only useful to bring older keys up to date.

save

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

Save al changes to the keyring and quit.

quit
Quit the program without updating the keyring.

The listing shows you the key with its secondary keysand all user IDs. The primary user ID is
indicated by adot, and selected keys or user IDs are indicated by an asterisk. Thetrust valueis
displayed with the primary key: "trust" is the assigned owner trust and "validity" is the calculated
validity of the key. Validity values are also displayed for all user IDs. For possible values of trust,
see: [trust-values).

--sign-key name
Signs a public key with your secret key. Thisis a shortcut version of the subcommand "sign” from
--edit-key.

--lsign-key name
Signs a public key with your secret key but marks it as non-exportable. Thisis a shortcut version
of the subcommand "lsign” from --edit-key.

--quick-sign-key fpr [names]

--quick-lsign-key fpr [names]
Directly sign akey from the passphrase without any further user interaction. The fpr must be the
verified primary fingerprint of akey in the local keyring. If no names are given, al useful user ids
are signed; with given [names] only useful user ids matching one of these names are signed. By
default, or if anameis prefixed with a’*’, a case insensitive substring match isused. If anameis
prefixed with a’=" a case sensitive exact match is done.

The command --quick-lsign-key marks the signatures as non-exportable. If such a non-exportable
signature already exists the --quick-sign-key turnsit into a exportable signature. If you need to
update an existing signature, for example to add or change notation data, you need to use the
option --for ce-sign-key.

This command uses reasonable defaults and thus does not provide the full flexibility of the "sign”

subcommand from --edit-key. Itsintended useisto help unattended key signing by utilizing alist
of verified fingerprints.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

--quick-add-uid user-id new-user-id
This command adds a new user id to an existing key. In contrast to the interactive sub-command
adduid of --edit-key the new-user-id is added verbatim with only leading and trailing white space
removed, it is expected to be UTF-8 encoded, and no checks on its form are applied.

--quick-revoke-uid user-id user-id-to-revoke
This command revokes a user 1D on an existing key. It cannot be used to revoke the last user ID
on key (some non-revoked user ID must remain), with revocation reason ‘‘User ID is no longer
valid'’. If you want to specify adifferent revocation reason, or to supply supplementary
revocation text, you should use the interactive sub-command revuid of --edit-key.

--quick-revoke-sig fpr signing-fpr [names)
This command revokes the key signatures made by signing-fpr from the key specified by the
fingerprint fpr. With names given only the signatures on user ids of the key matching any of the
given names are affected (see --quick-sign-key). If arevocation already exists anoticeis printed
instead of creating a new revocation; no error isreturned in this case. Note that key signature
revocations may be superseded by a newer key signature and in turn again revoked.

--quick-set-primary-uid user-id primary-user-id
This command sets or updates the primary user 1D flag on an existing key. user-id specifiesthe
key and primary-user-id the user ID which shall be flagged as the primary user ID. The primary

user ID flag is removed from all other user ids and the timestamp of all affected self-signaturesis
set one second ahead.

--quick-update-pref user-id
This command updates the preference list of the key to the current default value (either built-in or
set via--default-preference-list). Thisisthe unattended version of using "setpref" in the --key-edit
menu without giving alist. Note that you can show the preferencesin akey listing by using

--list-options show-pr ef or --list-options show-pref-verbose. Y ou should also re-distribute updated
keysto your peers.

--quick-set-ownertrust user-id value

This command sets the ownertrust of akey and can also be used to set the disable flag of akey.
Thisisthe unattended version of using "trust”, "disable", or "enable" in the --key-edit menu.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

--change-passphrase user-id

--passwd user-id
Change the passphrase of the secret key belonging to the certificate specified asuser-id. Thisisa
shortcut for the sub-command passwd of the --edit-key menu. When using together with the
option --dry-run thiswill not actually change the passphrase but check that the current passphrase
is correct.

OPTIONS
gpg features a bunch of options to control the exact behaviour and to change the default configuration.

Long options can be put in an options file (default "~/.gnupg/gpg.conf"). Short option names will not
work - for example, "armor" isavalid option for the options file, while "a" is not. Do not write the 2
dashes, but simply the name of the option and any required arguments. Lines with ahash ('#) asthe
first non-white-space character are ignored. Commands may be put in this file too, but that is not
generally useful asthe command will execute automatically with every execution of gpg.

Please remember that option parsing stops as soon as a non-option is encountered, you can explicitly
stop parsing by using the special option --.

How to change the configuration

These options are used to change the configuration and most of them are usually found in the option
file.

--default-key name
Use name as the default key to sign with. It issuggested to use afingerprint or at least along
keylD for name. If thisoption is not used, the default key isthefirst key found in the secret
keyring. Notethat -u or --local-user overrides this option. This option may be given multiple
times. Inthiscase, the last key for which a secret key isavailableisused. If thereisno secret key
available for any of the specified values, GnuPG will not emit an error message but continue asiif

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

this option wasn't given.

--default-recipient name
Use name as default recipient if option --recipient is not used and don’t ask if thisisavalid one.
name must be non-empty and it is suggested to use a fingerprint for name.

--default-recipient-self
Use the default key as default recipient if option --recipient isnot used and don't ask if thisisa
valid one. The default key isthe first one from the secret keyring or the one set with --default-key.

--no-default-r ecipient
Reset --default-recipient and --default-recipient-self. Should not be used in an option file.

-v, --ver bose
Give more information during processing. If used twice, the input dataislisted in detail.

--no-verbose
Reset verbose level to 0. Should not be used in an option file.

-q, --quiet
Try to be as quiet as possible. Should not be used in an option file.

--batch

--no-batch
Use batch mode. Never ask, do not allow interactive commands. --no-batch disables this option.
Note that even with a filename given on the command line, gpg might still need to read from
STDIN (in particular if gpg figures that the input is a detached signature and no data file has been
specified). Thusif you do not want to feed datavia STDIN, you should connect STDIN to
‘/devinull’.

It is highly recommended to use this option along with the options --status-fd and --with-colons for
any unattended use of gpg. Should not be used in an option file.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

--no-tty
Make surethat the TTY (terminal) is never used for any output. Thisoption isneeded in some
cases because GnuPG sometimes prints warningsto the TTY even if --batch is used.

__yes
Assume "yes' on most questions. Should not be used in an option file.

--no
Assume "no" on most questions. Should not be used in an option file.

--proc-all-sigs
This option overrides the behaviour of the --batch option to stop signature verification at the first
bad signatures.

--list-filter {select=expr}
A list filter can be used to output only certain keys during key listing commands. For the available
property names, see the description of --import-filter.

--list-options parameters
Thisis aspace or comma delimited string that gives options used when listing keys and signatures
(that is, --list-keys, --check-signatures, --list-public-keys, --list-secr et-keys, and the --edit-key
functions). Options can be prepended with a no- (after the two dashes) to give the opposite
meaning. The options are:

show-photos
Causes --list-keys, --check-signatures, --list-public-keys, and --list-secr et-keys to display any
photo IDs attached to the key. Defaultsto no. See also --photo-viewer. Does not work with
--with-colons: see --attribute-fd for the appropriate way to get photo data for scripts and other
frontends.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

show-usage
Show usage information for keys and subkeysin the standard key listing. Thisisalist of
letters indicating the allowed usage for a key (E=encryption, S=signing, C=certification,
A=authentication). Defaultsto yes.

show-ownertrust
Show the ownertrust value for keys also in the standard key listing. Defaultsto no.

show-policy-urls
Show policy URLsin the --check-signatureslistings. Defaultsto no.

show-notations

show-std-notations

show-user-notations
Show al, IETF standard, or user-defined signature notations in the --check-signatureslistings.
Defaultsto no.

show-keyserver-urls
Show any preferred keyserver URL in the --check-signatur es listings. Defaults to no.

show-uid-validity
Display the calculated validity of user IDs during key listings. Defaultsto yes.

show-unusable-uids
Show revoked and expired user IDs in key listings. Defaults to no.

show-unusable-subkeys
Show revoked and expired subkeysin key listings. Defaultsto no.

show-unusable-sigs
Show key signature made using weak or unsupported algorithms.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

show-keyring
Display the keyring name at the head of key listings to show which keyring a given key
resides on. Defaults to no.

show-sig-expire
Show signature expiration dates (if any) during --check-signatur es listings. Defaults to no.

show-sig-subpackets
Include signature subpackets in the key listing. This option can take an optional argument list
of the subpacketsto list. If no argument is passed, list all subpackets. Defaults to no. This
option is only meaningful when using --with-colons along with --check-signatures.

show-only-fpr-mbox
For each user-id which has avalid mail address print only the fingerprint followed by the mail
address.

sort-sigs
With --list-sigs and --check-sigs sort the signatures by keylD and creation time to make it
easier to view the history of these signatures. The self-signature is also listed before other
signatures. Defaultsto yes. This option has no effect in -with-colons mode.

--verify-options parameters
Thisis a space or comma delimited string that gives options used when verifying signatures.
Options can be prepended with a“no-’ to give the opposite meaning. The options are:

show-photos
Display any photo IDs present on the key that issued the signature. Defaultsto no. See also
--photo-viewer.

show-policy-urls
Show policy URLsin the signature being verified. Defaults to yes.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

show-notations

show-std-notations

show-user-notations
Show all, IETF standard, or user-defined signature notations in the signature being verified.
Defaultsto IETF standard.

show-keyserver-urls
Show any preferred keyserver URL in the signature being verified. Defaultsto yes.

show-uid-validity
Display the calculated validity of the user I1Ds on the key that issued the signature. Defaults to
yes.

show-unusable-uids
Show revoked and expired user |Ds during signature verification. Defaults to no.

show-primary-uid-only
Show only the primary user ID during signature verification. That isall the AKA lines aswell
as photo Ids are not shown with the signature verification status.

--enable-large-rsa

--disable-large-rsa
With --generate-key and --batch, enable the creation of RSA secret keys as large as 8192 hit.
Note: 8192 bit is more than is generally recommended. These large keys don't significantly
improve security, but they are more expensive to use, and their signatures and certifications are
larger. Thisoption isonly availableif the binary was build with large-secmem support.

--enable-dsa2

--disable-dsa2
Enable hash truncation for all DSA keys even for old DSA Keys up to 1024 bit. Thisisalso the
default with --openpgp. Note that older versions of GnuPG also required this flag to alow the
generation of DSA larger than 1024 bit.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

--photo-viewer string
Thisisthe command line that should be run to view a photo ID. "%i" will be expanded to a
filename containing the photo. "%l" does the same, except the file will not be deleted once the
viewer exits. Other flags are "%k" for the key ID, "%K" for the long key 1D, "%f" for the key
fingerprint, "%t" for the extension of the image type (e.g. "jpg"), "%T" for the MIME type of the
image (e.g. "image/jpeg"), "%v" for the single-character calculated validity of the image being
viewed (e.g. "f"), "%V" for the calculated validity asastring (e.g. "full"), "%U" for a base32
encoded hash of the user ID, and "%%" for an actual percent sign. If neither %i or %l are present,
then the photo will be supplied to the viewer on standard input.

On Unix the default viewer is xloadimage -fork -quiet -title’Keyl D 0x%k’ STDIN with afallback
to display -title’Keyl D 0x%k’ %i and finally to xdg-open %i. On Windows ! ShellExecute 400 %i
is used; here the command is a meta command to use that API call followed by await timein
milliseconds which is used to give the viewer time to read the temporary image file before gpg
deletesit again. Note that if your image viewer program is not secure, then executing it from gpg
does not make it secure.

--exec-path string
Sets alist of directories to search for photo viewers If not provided photo viewers use the PATH
environment variable.

--keyringfile
Add file to the current list of keyrings. If file begins with atilde and a dash, these are replaced by
the SHOME directory. If the filename does not contain aslash, it is assumed to be in the GnuPG
home directory ("~/.gnupg" unless --homedir or $GNUPGHOME is used).

Note that this adds a keyring to the current list. If theintent is to use the specified keyring alone,
use --keyring along with --no-default-keyring.

If the option --no-keyring has been used no keyrings will be used at all.
Note that if the option use-keyboxd is enabled in ‘ common.conf’, no keyrings are used at all and

keys are all maintained by the keyboxd processin its own database.

--primary-keyring file
Thisisavarian of --keyring and designates file as the primary public keyring. This means that
newly imported keys (via--import or keyserver --r ecv-from) will go to this keyring.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

--secret-keyring file
Thisis an obsolete option and ignored. All secret keys are stored in the ‘ private-keys-v1.d'
directory below the GnuPG home directory.

--trustdb-namefile
Usefileinstead of the default trustdb. If file begins with atilde and a dash, these are replaced by
the SHOME directory. If the filename does not contain a slash, it is assumed to be in the GnuPG
home directory (‘~/.gnupg’ if --homedir or SGNUPGHOME is not used).

--homedir dir
Set the name of the home directory to dir. If this option is not used, the home directory defaults to
‘~/.gnupg’. Itisonly recognized when given on the command line. It also overrides any home
directory stated through the environment variable ‘ GNUPGHOME' or (on Windows systems) by
means of the Registry entry HKCU\Softwar e\ GNU\GnhuPG: HomeDir .

On Windows systemsiit is possible to install GnuPG as a portable application. In this case only
this command line option is considered, all other ways to set a home directory are ignored.

--display-char set name
Set the name of the native character set. Thisis used to convert some informational strings like
user IDsto the proper UTF-8 encoding. Note that this has nothing to do with the character set of
datato be encrypted or signed; GnuPG does not recode user-supplied data. If this option is not
used, the default character set is determined from the current locale. A verbosity level of 3 shows
the chosen set. This option should not be used on Windows. Valid values for name are:

is0-8859-1
ThisistheLatin 1 set.

iS0-8859-2
The Latin 2 set.

iS0-8859-15

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

Thisiscurrently an aliasfor the Latin 1 set.

koi8-r
The usual Russian set (RFC-1489).

utf-8
Bypass all trandations and assume that the OS uses native UTF-8 encoding.

--utf8-strings

--no-utf8-strings
Assume that command line arguments are given as UTF-8 strings. The default (--no-utf8-strings) is
to assume that arguments are encoded in the character set as specified by --display-char set. These
options affect al following arguments. Both options may be used multiple times. Thisoption
should not be used in an option file.

This option has no effect on Windows. There the internal used UTF-8 encoding is trandated for
console input and output. The command line arguments are expected as Unicode and translated to
UTF-8. Thuswhen calling this program from another, make sure to use the Unicode version of
CreateProcess.

--optionsfile
Read options from file and do not try to read them from the default options file in the homedir (see
--homedir). Thisoptionisignored if used in an optionsfile.

--no-options
Shortcut for --options /dev/null. This option is detected before an attempt to open an option file.
Using this option will also prevent the creation of a“‘~/.gnupg’ homedir.

-Zn
--compress-level n
--bzip2-compress-level n
--NO-COMpress
Set compression level to n for the ZIP and ZL1B compression algorithms. The default isto use the

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

default compression level of zlib (normally 6). --bzip2-compress-level setsthe compression level
for the BZIP2 compression algorithm (defaulting to 6 aswell). Thisis a different option from
--compress-level since BZIP2 uses a significant amount of memory for each additional
compression level.

Option -z sets both. A value of O for n disables compression. A value of -1 forces compression
using the default level. Option --no-compressisidentical to -z0.

Except for the --store command compression is always used unless gpg detects that the input is
already compressed. To inhibit the use of compression use -z0 or --no-compr ess; to force
compression use -z-1 or option z with another compression level than the default as indicated by
-1. Notethat this overriding of the default deection works only with z and not with the long
variant of this option.

--bzip2-decompr ess-lowmem
Use adifferent decompression method for BZIP2 compressed files. This alternate method uses a
bit more than half the memory, but also runs at half the speed. Thisis useful under extreme low
memory circumstances when the file was originally compressed at a high --bzip2-compress-level.

--mangle-dos-filenames

--no-mangle-dos-filenames
Older version of Windows cannot handle filenames with more than one dot.
--mangle-dos-filenames causes GhuPG to replace (rather than add to) the extension of an output
filename to avoid this problem. This option is off by default and has no effect on non-Windows
platforms.

--ask-cert-level

--no-ask-cert-level
When making akey signature, prompt for a certification level. If this option is not specified, the
certification level used is set via--default-cert-level. See --default-cert-level for information on the
specific levels and how they are used. --no-ask-cert-level disablesthis option. This option defaults
to no.

--default-cert-level n

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

The default to use for the check level when signing akey.
0 means you make no particular claim asto how carefully you verified the key.

1 means you believe the key is owned by the person who claims to own it but you could not, or did
not verify the key at all. Thisis useful for a"persona” verification, where you sign the key of a
pseudonymous user.

2 means you did casual verification of the key. For example, this could mean that you verified the
key fingerprint and checked the user 1D on the key against a photo ID.

3 means you did extensive verification of the key. For example, this could mean that you verified
the key fingerprint with the owner of the key in person, and that you checked, by means of a hard
to forge document with a photo ID (such as a passport) that the name of the key owner matches the
name in the user ID on the key, and finally that you verified (by exchange of email) that the email
address on the key belongs to the key owner.

Note that the examples given above for levels 2 and 3 are just that: examples. Intheend, itisupto
you to decide just what "casual" and "extensive' mean to you.

This option defaults to O (no particular claim).

--min-cert-level
When building the trust database, treat any signatures with a certification level below thisas
invalid. Defaults to 2, which disregards level 1 signatures. Note that level 0 "no particular claim"
signatures are always accepted.

--trusted-key long key ID or fingerprint
Assume that the specified key (which should be given as fingerprint) is as trustworthy as one of
your own secret keys. This option is useful if you don’t want to keep your secret keys (or one of
them) online but still want to be able to check the validity of agiven recipient’s or signator’ s key.
If the given key is not locally available but an LDAP keyserver is configured the missing key is
imported from that server. The value "none" is explicitly allowed to distinguish between the use of
any trusted-key option and no use of this option at all (e.g. due to the --no-options option).

--add-desig-revoker [sensitive:]fingerprint
Add the key specified by fingerprint as a designated revoker to newly created keys. If the

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

fingerprint is prefixed with the keyword *‘ sensitive:”’ that info is normally not exported with the
key. This option may be given several times to add more than one designated revoker. |If the
keyword *‘clear’’ isused instead of afingerprint, all previously fiven fingerprints are discarded.
Designated revokers are marked on the key as non-revocable. Note that a designated revoker
specified using a parameter file will also be added to the key.

--default-new-key-adsk fingerprint
Add the subkey specified by fingerprint as an Additional Decryption Subkey (ADSK) to newly
created keys. This option may be given several time to add more than one ADSK. Itisalso
possibleto give several fingerprints delimited by space or comma as value to this option. If the
keyword ‘‘clear’’ isused instead of afingerprint, all previously specified fingerprints are discarded
(useful to override options given in aconfig file). The fingerprint is expected to specify a subkey
and it does not need an exclamation mark as suffix; it must be given in cmpact format (40 or 64
hex-digits without any spaces).

--trust-model {pgp|classic|tofu|tofu+pgp|dir ect|always|auto}
Set what trust model GnuPG should follow. The models are:

pgp Thisisthe Web of Trust combined with trust signatures as used in PGP 5.x and later. Thisis
the default trust model when creating a new trust database.

classic
Thisisthe standard Web of Trust as introduced by PGP 2.

tofu

TOFU stands for Trust On First Use. In this experimental trust model, the first time akey is
seen, itismemorized. If later another key with a user id with the same email addressis seen,
both keys are marked as suspect. In that case, the next time either is used, awarning is
displayed describing the conflict, why it might have occurred (either the user generated a new
key and failed to cross sign the old and new keys, the key isforgery, or aman-in-the-middle

attack is being attempted), and the user is prompted to manually confirm the validity of the
key in question.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1)

GNU Privacy Guard 2.4 GPG(1)

Because a potential attacker is able to control the email address and thereby circumvent the
conflict detection algorithm by using an email address that is similar in appearance to atrusted
email address, whenever amessage is verified, statistics about the number of messages signed
with the key are shown. Inthisway, auser can easily identify attacks using fake keys for
regular correspondents.

When compared with the Web of Trust, TOFU offers significantly weaker security guarantees.
In particular, TOFU only helps ensure consistency (that is, that the binding between akey and
email address doesn’t change). A major advantage of TOFU isthat it requires little
maintenance to use correctly. To use the web of trust properly, you need to actively sign keys
and mark users astrusted introducers. Thisis atime-consuming process and anecdotal
evidence suggests that even security-conscious users rarely take the time to do this thoroughly
and instead rely on an ad-hoc TOFU process.

In the TOFU model, policies are associated with bindings between keys and email addresses
(which are extracted from user ids and normalized). There are five policies, which can be set
manually using the --tofu-policy option. The default policy can be set using the
--tofu-default-policy option.

The TOFU policies are: auto, good, unknown, bad and ask. The auto policy isused by default
(unless overridden by --tofu-default-policy) and marks a binding as marginaly trusted. The
good, unknown and bad policies mark a binding as fully trusted, as having unknown trust or as
having trust never, respectively. The unknown policy is useful for just using TOFU to detect
conflicts, but to never assign positive trust to abinding. Thefina policy, ask prompts the user
toindicate the binding' strust. If batch modeis enabled (or input isinappropriate in the
context), then the user is not prompted and the undefined trust level is returned.

tofu+pgp

This experimental trust model combines TOFU with the Web of Trust. Thisisdone by
computing the trust level for each model and then taking the maximum trust level where the
trust levels are ordered as follows: unknown < undefined < marginal < fully < ultimate <
expired < never.

By setting --tofu-default-policy=unknown, this model can be used to implement the web of
trust with TOFU’ s conflict detection algorithm, but without its assignment of positive trust
values, which some security-conscious users don't like.

direct

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

Key validity is set directly by the user and not calculated viathe Web of Trust. Thismodel is
solely based on the key and does not distinguish user IDs. Note that when changing to another
trust model the trust values assigned to a key are transformed into ownertrust values, which
aso indicate how you trust the owner of the key to sign other keys.

always
Skip key validation and assume that used keys are always fully valid. Y ou generally won't use
this unless you are using some external validation scheme. This option also suppresses the
"[uncertain]" tag printed with signature checks when there is no evidence that the user ID is
bound to the key. Note that thistrust model still does not allow the use of expired, revoked, or

disabled keys.

auto
Select the trust model depending on whatever the internal trust database says. Thisisthe
default model if such a database already exists. Note that atofu trust model is not considered
here and must be enabled explicitly.

--always-trust
Identical to --trust-model always.

--assert-signer fpr_or_file
This option checks whether at least one valid signature on a file has been made with the specified
key. Thekey iseither specified as afingerprint or afile listing fingerprints. The fingerprint must
be given or listed in compact format (no colons or spaces in between). This option can be given
multiple times and each fingerprint is checked against the signing key as well as the corresponding
primary key. If fpr_or_file specifies afile, empty lines areignored as well asall lines starting with
ahash sign. With this option gpg is guaranteed to return with an exit code of O if and only if a
signature has been encountered, isvalid, and the key matches one of the fingerprints given by this
option.

--assert-pubkey-algo algolist
During data signature verification this options checks whether the used public key algorithm
matches the algorithms given by algolist. This option can be given multiple times to concatenate
more algorithms to the list; the delimiter of the list are either commas or spaces.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

The algorithm names given in the list may either be verbatim names like "ed25519" with an
optional leading single equal sign, or being prefixed with ">", ">=" "<=" or "<". That prefix
operator is applied to the number part of the algorithm name; for example 2048 in "rsa2048" or
384 in "brainpoolP384r1". If the the leading non-digits in the name matches, the prefix operator is
used to compare the number part, atrailing suffix isignored in this case. For example an
algorithm list ">rsa3000, >=brainpool 384r1, =ed25519" allows RSA signatures with more that
3000 bits, Brainpool curves 384 and 512, and the ed25519 agorithm.

With this option gpg (and also gpgv) is guaranteed to return with an exit code of O if and only if al
valid signatures on data are made using a matching algorithm from the given list.

--auto-key-locate mechanisms

--no-auto-key-locate
GnuPG can automatically locate and retrieve keys as needed using this option. This happens when
encrypting to an email address (in the "user@example.com" form), and there are no
"user@example.com" keys on the local keyring. This option takes any number of the mechanisms
listed below, in the order they are to betried. Instead of listing the mechanisms as comma
delimited arguments, the option may also be given severa timesto add more mechanism. The
option --no-auto-key-locate or the mechanism "clear” resetsthe list. The default is"local ,wkd".

cert Locate akey using DNS CERT, as specified in RFC-4398.

dane
Locate akey using DANE, as specified in draft-ietf-dane-openpgpkey-05.txt.

wkd
Locate akey using the Web Key Directory protocol.

Idap
L ocate the key using the configured LDAP servers. This method is similar to the keyserver

mechanism but always uses only LDAP servers.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1)

GNU Privacy Guard 2.4 GPG(1)

ntds
Locate the key using the Active Directory (Windows only). This method also alows oneto
search by fingerprint using the command --locate-external-key. Note that this mechanismis
actually a shortcut for the mechanism ‘Idap’ using only "ldap:///" asthe keyserver.

keyserver
Locate akey using akeyserver. This method also alows one to search by fingerprint using
the command --locate-exter nal-key if any of the configured keyserversisan LDAP server.

keyserver-URL
In addition, akeyserver URL as used in the dirmngr configuration may be used here to query
that particular keyserver. This method also allows one to search by fingerprint using the
command --locate-exter nal-key if the URL specifies an LDAP server.

local
Locate the key using the local keyrings. This mechanism allows the user to select the order a
local key lookup isdone. Thus using ‘--auto-key-locate local’ isidentical to
--no-auto-key-locate.

nodefault
Thisflag disables the standard local key lookup, done before any of the mechanisms defined
by the --auto-key-locate are tried. The position of this mechanism in the list does not matter.
It isnot required if local is also used.

clear
Clear al defined mechanisms. Thisis useful to override mechanisms given in aconfig file.
Note that a nodefault in mechanisms will also be cleared unlessit is given after the clear.

--auto-key-import
--no-auto-key-import

Thisis an offline mechanism to get a missing key for signature verification and for later encryption
tothiskey. If thisoptionisenabled and a signature includes an embedded key, that key is used to

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

verify the signature and on verification success the key isimported. The default is
--no-auto-key-import.

On the sender (signing) site the option --include-key-block needs to be used to put the public part
of the signing key as"Key Block subpacket" into the signature.

--auto-key-retrieve

--no-auto-key-retrieve
These options enable or disable the automatic retrieving of keys from a keyserver when verifying
signatures made by keysthat are not on the local keyring. The default is --no-auto-key-retrieve.

The order of methods tried to lookup the key is:

1. If the option --auto-key-import is set and the signatures includes an embedded key, that key is
used to verify the signature and on verification success that key isimported.

2. If apreferred keyserver is specified in the signature and the option honor-keyserver-url is active
(which is not the default), that keyserver istried. Note that the creator of the signature uses the
option --sig-keyserver -url to specify the preferred keyserver for data signatures.

3. If the signature has the Signer’s UID set (e.g. using --sender while creating the signature) a Web
Key Directory (WKD) lookup isdone. Thisisthe default configuration but can be disabled by
removing WKD from the auto-key-locate list or by using the option --disable-signer-uid.

4. If any keyserver is configured and the Issuer Fingerprint is part of the signature (since GnuPG
2.1.16), the configured keyservers are tried.

Note that this option makes a"web bug" like behavior possible. Keyserver or Web Key Directory
operators can see which keys you request, so by sending you a message signed by a brand new key
(which you naturally will not have on your local keyring), the operator can tell both your 1P
address and the time when you verified the signature.

--keyid-format {nonejshort|Oxshort|long|Oxlong}
Select how to display key IDs. "none" does not show the key ID at al but shows the fingerprint in
aseparate line. "short" isthe traditional 8-character key ID. "long" isthe more accurate (but less
convenient) 16-character key ID. Add an "0x" to either to include an "0x" at the beginning of the
key ID, asin 0x99242560. Note that thisoption isignored if the option --with-colonsis used.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

--keyserver name
This option is deprecated - please use the --keyserver in ‘dirmngr.conf’ instead.

Use name as your keyserver. Thisisthe server that --receive-keys, --send-keys, and --sear ch-keys
will communicate with to receive keys from, send keys to, and search for keys on. The format of
the name is a URI: ‘ scheme:[//]keyservername]:port]’ The schemeisthe type of keyserver:
"hkp"/"hkps' for the HTTP (or compatible) keyservers or "Idap"/"Idaps’ for the LDAP keyservers.
Note that your particular installation of GnuPG may have other keyserver types available as well.
Keyserver schemes are case-insensitive.

Most keyservers synchronize with each other, so thereis generally no need to send keysto more
than one server. The keyserver hkp://keys.gnupg.net uses round robin DNS to give a different
keyserver each time you useit.

--keyser ver -options {name=value}
Thisis a space or comma delimited string that gives options for the keyserver. Options can be
prefixed with a‘no-’ to give the opposite meaning. Valid import-options or export-options may be
used here as well to apply to importing (--recv-key) or exporting (--send-key) akey from a
keyserver. While not all options are available for al keyserver types, some common options are:

include-revoked
When searching for a key with --sear ch-keys, include keys that are marked on the keyserver as
revoked. Note that not all keyservers differentiate between revoked and unrevoked keys, and
for such keyservers this option is meaningless. Note also that most keyservers do not have
cryptographic verification of key revocations, and so turning this option off may result in
skipping keys that are incorrectly marked as revoked.

include-disabled
When searching for a key with --sear ch-keys, include keys that are marked on the keyserver as
disabled. Note that this option is not used with HKP keyservers.

auto-key-retrieve
Thisis an obsolete alias for the option auto-key-retrieve. Please do not useit; it will be
removed in future versions..

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

honor -keyserver-url
When using --refresh-keys, if the key in question has a preferred keyserver URL, then use that
preferred keyserver to refresh the key from. In addition, if auto-key-retrieve is set, and the
signature being verified has a preferred keyserver URL, then use that preferred keyserver to
fetch the key from. Note that this option introduces a "web bug": The creator of the key can
see when the keysisrefreshed. Thusthis option is not enabled by default.

include-subkeys
When receiving akey, include subkeys as potential targets. Note that this option is not used
with HKP keyservers, as they do not support retrieving keys by subkey id.

only-pubkeys
Do now allow to import secret keys.

timeout

http-pr oxy=value
verbose

debug

check-cert

ca-cert-file
These options have no more function since GnuPG 2.1. Usethe dirmngr configuration options
instead.

The default list of optionsis: "self-sigs-only, repair-keys, repair-pks-subkey-bug, export-attributes”.
However, if the actual used sourceis an LDAP server "no-self-sigs-only" is assumed unless "self-sigs-
only" has been explicitly configured.

--completes-needed n
Number of completely trusted users to introduce a new key signer (defaultsto 1).

--marginals-needed n
Number of marginally trusted users to introduce a new key signer (defaultsto 3)

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

--tofu-default-policy {auto|good|unknown|bad|ask}
The default TOFU policy (defaults to auto). For more information about the meaning of this
option, see: [trust-model-tofu].

--max-cert-depth n
Maximum depth of a certification chain (default is 5).

--no-sig-cache
Do not cache the verification status of key signatures. Caching gives a much better performancein
key listings. However, if you suspect that your public keyring is not safe against write
modifications, you can use this option to disable the caching. It probably does not make sense to
disable it because al kind of damage can be done if someone el se has write access to your public

keyring.

--auto-check-trustdb

--no-auto-check-trustdb
If GnuPG feelsthat its information about the Web of Trust has to be updated, it automatically runs
the --check-trustdb command internally. This may be atime consuming process.
--no-auto-check-trustdb disables this option.

--use-agent
--no-use-agent
Thisis dummy option. gpg always requires the agent.

--gpg-agent-info
Thisis dummy option. It has no effect when used with gpg.

--agent-program file
Specify an agent program to be used for secret key operations. The default value is determined by
running gpgconf with the option --list-dirs. Note that the pipe symbol (|) is used for aregression
test suite hack and may thus not be used in the file name.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

--dirmngr-program file
Specify adirmngr program to be used for keyserver access. The default valueis
‘fusr/bin/dirmngr’.

--disable-dirmngr
Entirely disable the use of the Dirmngr.

--no-autostart
Do not start the gpg-agent or the dirmngr if it has not yet been started and its service is required.
This option is mostly useful on machines where the connection to gpg-agent has been redirected to
another machines. If dirmngr is required on the remote machine, it may be started manually using
gpgconf --launch dirmngr.

--lock-once
Lock the databases the first time alock is requested and do not release the lock until the process
terminates.

--lock-multiple
Release the locks every time alock is no longer needed. Use thisto override a previous --lock-once
from a config file.

--lock-never
Disable locking entirely. This option should be used only in very specia environments, where it
can be assured that only one processis accessing those files. A bootable floppy with a stand-alone
encryption system will probably use this. Improper usage of this option may lead to data and key
corruption.

--exit-on-status-write-error
This option will cause write errors on the status FD to immediately terminate the process. That
should in fact be the default but it never worked this way and thus we need an option to enable
this, so that the change won’t break applications which close their end of a status fd connected pipe
too early. Using this option along with --enable-pr ogr ess-filter may be used to cleanly cancel long
running gpg operations.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

--limit-card-insert-triesn
With n greater than 0 the number of prompts asking to insert a smartcard gets limited to N-1. Thus
with avalue of 1 gpgwon't at al ask to insert acard if none has been inserted at startup. This
option is useful in the configuration file in case an application does not know about the smartcard
support and waits ad infinitum for an inserted card.

--no-random-seed-file
GnuPG uses afileto storeitsinternal random pool over invocations. This makes random
generation faster; however sometimes write operations are not desired. This option can be used to
achieve that with the cost of slower random generation.

--No-greeting
Suppressthe initial copyright message.

--no-secmem-war ning
Suppress the warning about "using insecure memory".

--No-per mission-war ning
Suppress the warning about unsafe file and home directory (--homedir) permissions. Note that the
permission checks that GnuPG performs are not intended to be authoritative, but rather they simply
warn about certain common permission problems. Do not assume that the lack of awarning means
that your system is secure.

Note that the warning for unsafe --hnomedir permissions cannot be suppressed in the gpg.conf file,
asthiswould alow an attacker to place an unsafe gpg.conf file in place, and usethisfile to
suppress warnings about itself. The --homedir permissions warning may only be suppressed on the
command line.

--require-secmem
--NO-requir e-secmem
Refuse to run if GnuPG cannot get secure memory. Defaults to no (i.e. run, but give awarning).

--require-cross-cer tification

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

--no-require-cross-certification
When verifying a signature made from a subkey, ensure that the cross certification "back
signature” on the subkey is present and valid. This protects against a subtle attack against subkeys
that can sign. Defaults to --requir e-cross-cer tification for gpg.

--expert

--no-expert
Allow the user to do certain nonsensical or "silly" things like signing an expired or revoked key, or
certain potentially incompatible things like generating unusual key types. This also disables certain
warning messages about potentially incompatible actions. As the name implies, this optionisfor
experts only. If you don’t fully understand the implications of what it allows you to do, leave this
off. --no-expert disables this option.

Key related options

--recipient name

-r Encrypt for user id name. If this option or --hidden-recipient is not specified, GnuPG asks for the
user-id unless --default-recipient is given.

--hidden-r ecipient name

-R Encrypt for user ID name, but hide the key ID of this user’s key. This option helpsto hide the
receiver of the message and is alimited countermeasure against traffic analysis. If this option or
--recipient is not specified, GnuPG asks for the user ID unless --default-recipient is given.

--recipient-filefile

-f Thisoptionissimilar to --recipient except that it encrypts to akey stored in the given file. file
must be the name of afile containing exactly one key. gpg assumes that the key inthisfileisfully
valid.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

--hidden-r ecipient-filefile

-F Thisoptionissimilar to --hidden-recipient except that it encryptsto akey stored in the given file.
file must be the name of afile containing exactly one key. gpg assumes that the key in thisfileis
fully valid.

--encrypt-to name
Same as --r ecipient but this one isintended for use in the options file and may be used with your
own user-id as an "encrypt-to-self". It is suggested to use afingerprint or at least along keyID for
name. These keys are only used when there are other recipients given either by use of --recipient
or by the asked user id. No trust checking is performed for these user ids and even disabled keys
can be used.

--hidden-encrypt-to name
Same as --hidden-recipient but this oneisintended for use in the options file and may be used with
your own user-id as a hidden "encrypt-to-self”. It issuggested to use afingerprint or at least along
keylD for name. These keys are only used when there are other recipients given either by use of
--recipient or by the asked user id. No trust checking is performed for these user ids and even
disabled keys can be used.

--no-encrypt-to
Disable the use of all --encrypt-to and --hidden-encrypt-to keys.

--group {name=value}
Sets up a named group, which is similar to aliases in email programs. Any time the group nameis
arecipient (-r or --recipient), it will be expanded to the values specified. Multiple groups with the
same name are automatically merged into a single group.

Thevalues are key 1 Ds or fingerprints, but any key description is accepted. Note that a value with
spacesin it will be treated as two different values. Note also thereis only one level of expansion ---
you cannot make an group that points to another group. When used from the command line, it may
be necessary to quote the argument to this option to prevent the shell from treating it as multiple
arguments.

--ungroup name
Remove a given entry from the --group list.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

--NO-groups
Remove all entries from the --group list.

--local-user name
-u Use name as the key to sign with. Note that this option overrides --default-key.

--sender mbox
This option has two purposes. mbox must either be a complete user ID containing a proper mail
address or just aplain mail address. The option can be given multiple times.

When creating a signature this option tells gpg the signing key’ s user id used to make the signature
and embeds that user ID into the created signature (using OpenPGP's ** Signer’s User ID"’
subpacket). If the option is given multiple times a suitable user ID is picked. However, if the
signing key was specified directly by using amail address (i.e. not by using a fingerprint or key
ID) this option is used and the mail address is embedded in the created signature.

When verifying a signature mbox is used to restrict the information printed by the TOFU code to
matching user IDs. If the option is used and the signature containsa‘* Signer’s User ID”’
subpacket that information isis also used to restrict the printed information. Note that GnuPG
considers only the mail address part of a User ID.

If this option or the said subpacket is available the TRUST lines as printed by option status-fd
correspond to the corresponding User ID; if no User ID is known the TRUST lines are computed
directly on the key and do not give any information about the User ID. In the latter caseit his
highly recommended to scripts and other frontends to evaluate the VALIDSIG line, retrieve the
key and print al User IDs aong with their validity (trust) information.

--try-secret-key name
For hidden recipients GPG needs to know the keys to use for trial decryption. The key set with
--default-key is always tried first, but thisis often not sufficient. This option allows setting more
keysto be used for trial decryption. Although any valid user-id specification may be used for
name it makes sense to use at least the long keyid to avoid ambiguities. Note that gpg-agent might
pop up a pinentry for alot keysto do the trial decryption. If you want to stop all further tria
decryption you may use close-window button instead of the cancel button.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

--try-all-secrets
Don't look at the key 1D as stored in the message but try all secret keysin turn to find the right
decryption key. This option forces the behaviour as used by anonymous recipients (created by
using --throw-keyids or --hidden-r ecipient) and might come handy in case where an encrypted

message contains a bogus key ID.

--skip-hidden-r ecipients

--no-skip-hidden-r ecipients
During decryption skip all anonymous recipients. This option helpsin the case that people use the
hidden recipients feature to hide their own encrypt-to key from others. If one has many secret keys
this may lead to a major annoyance because all keys are tried in turn to decrypt something which
was not really intended for it. The drawback of thisoption isthat it is currently not possibleto
decrypt a message which includes real anonymous recipients.

Input and Output

--armor
-a Create ASCII armored output. The default isto create the binary OpenPGP format.

--no-ar mor
Assume the input datais not in ASCIIl armored format.

--output file
-ofile
Write output to file. To write to stdout use - as the filename.

--max-output n
This option sets alimit on the number of bytes that will be generated when processing afile. Since
OpenPGP supports various levels of compression, it is possible that the plaintext of a given

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

message may be significantly larger than the original OpenPGP message. While GnhuPG works
properly with such messages, there is often adesire to set a maximum file size that will be
generated before processing is forced to stop by the OS limits. Defaults to 0, which means "no
limit".

--chunk-sizen
The AEAD encryption mode encrypts the datain chunks so that a receiving side can check for
transmission errors or tampering at the end of each chunk and does not need to delay this until all
data has been received. The used chunk sizeis 2*n byte. The lowest allowed valuefor nis6 (64
byte) and the largest is the default of 22 which creates chunks not larger than 4 MiB.

--input-size-hint n
This option can be used to tell GPG the size of the input datain bytes. n must be a positive
base-10 number. Thisoption isonly useful if the input is not taken from afile. GPG may use this
hint to optimize its buffer allocation strategy. It isaso used by the --status-fd line ** PROGRESS"’
to provide avaluefor ‘‘total’’ if that is not available by other means.

--key-origin string[,url]
gpg can track the origin of akey. Certain origins are implicitly known (e.g. keyserver, web key
directory) and set. For a standard import the origin of the keysimported can be set with this
option. Tolist the possible values use "help” for string. Some origins can store an optional url
argument. That URL can appended to string after acomma.

--import-options parameters
Thisis a space or comma delimited string that gives options for importing keys. Options can be
prepended with a‘no-’ to give the opposite meaning. The options are:

import-local-sigs
Allow importing key signatures marked as "local". Thisis not generally useful unless a shared
keyring schemeis being used. Defaultsto no.

keep-ownertrust
Normally possible still existing ownertrust values of akey are cleared if akey isimported.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

Thisisin general desirable so that aformerly deleted key does not automatically gain an
ownertrust values merely due to import. On the other hand it is sometimes necessary to re-
import atrusted set of keys again but keeping already assigned ownertrust values. This can be
achieved by using this option.

repair-pks-subkey-bug
During import, attempt to repair the damage caused by the PKS keyserver bug (pre version
0.9.6) that mangles keys with multiple subkeys. Note that this cannot completely repair the
damaged key as some crucia dataisremoved by the keyserver, but it does at |east give you
back one subkey. Defaults to no for regular --import and to yes for keyserver --r eceive-keys.

import-show

show-only
Show alisting of the key asimported right before it is stored. This can be combined with the
option --dry-run to only look at keys; the option show-only is a shortcut for this combination.
The command --show-keys is another shortcut for this. Note that suffixeslike'# for "sec"
and "sbb" lines may or may not be printed.

import-export
Run the entire import code but instead of storing the key to the local keyring write it to the
output. The export option export-dane affect the output. This option can for example be used
to remove al invalid parts from a key without the need to storeit.

mer ge-only
During import, allow key updates to existing keys, but do not allow any new keysto be
imported. Defaults to no.

import-clean
After import, compact (remove all signatures except the self-signature) any user IDs from the
new key that are not usable. Then, remove any signatures from the new key that are not
usable. Thisincludes signatures that were issued by keys that are not present on the keyring.
This option is the same as running the --edit-key command "clean" after import. Defaults to
no.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

self-sigs-only
Accept only self-signatures while importing akey. All other key signatures are skipped at an
early import stage. This option can be used with keyser ver-optionsto mitigate attempts to
flood a key with bogus signatures from a keyserver. The drawback isthat all other valid key
signatures, as required by the Web of Trust are also not imported. Note that when using this
option along with import-clean it suppresses the final clean step after merging the imported
key into the existing key.

ignor e-attributes
Ignore all attribute user I1Ds (photo IDs) and their signatures while importing a key.

repair-keys
After import, fix various problems with the keys. For example, this reorders signatures, and
strips duplicate signatures. Defaultsto yes.

bulk-import
When used the keyboxd (option use-keyboxd in * common.conf’) does the import within a
single transaction.

import-minimal
Import the smallest key possible. Thisremoves all signatures except the most recent self-
signature on each user ID. This option is the same as running the --edit-key command
"minimize" after import. Defaultsto no.

restore

import-restore
Import in key restore mode. Thisimports al datawhich isusualy skipped during import;
including all GnuPG specific data. All other contradicting options are overridden.

--import-filter {name=expr}

--export-filter {name=expr}
These options define an import/export filter which are applied to the imported/exported keyblock
right before it will be stored/written. name defines the type of filter to use, expr the expression to
evaluate. The option can be used several times which then appends more expression to the same

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

name.

The availablefilter types are:

keep-uid
Thisfilter will keep auser id packet and its dependent packetsin the keyblock if the
expression evaluates to true.

drop-subkey
Thisfilter drops the selected subkeys. Currently only implemented for --export-filter.

drop-sig
Thisfilter drops the selected key signatures on user ids. Self-signatures are not considered.
Currently only implemented for --import-filter.

select
Thisfilter isonly implemented by --list-filter. All property names may be used.

For the syntax of the expression see the chapter "FILTER EXPRESSIONS'. The property names for
the expressions depend on the actual filter type and are indicated in the following table. Note that all
property names may also be used by --list-filter.

Property names may be prefix with a scope delimited by aslash. Valid scopes are "pub” for public and
secret primary keys, "sub” for public and secret subkeys, "uid" for for user-1D packets, and "sig" for
signature packets. Invalid scopes are currently ignored.

The available properties are;

uid A string with the user id. (keep-uid)

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

mbox
The addr-spec part of auser id with mailbox or the empty string. (keep-uid)

algostr
A string with the key algorithm description. For example "rsa3072" or "ed25519".

key algo
A number with the public key algorithm of akey or subkey packet. (drop-subkey)

key size
A number with the effective key size of akey or subkey packet. (drop-subkey)

key created

key created d
Thefirst isthe timestamp a public key or subkey packet was created. The second is the same
but given as an 1SO string, e.g. "2016-08-17". (drop-subkey)

key _expires

key expires d
The expiration time of a public key or subkey or O if it does not expire. The second isthe
same but given as an 1SO date string or an empty string e.g. "2038-01-19".

fpr The hexified fingerprint of the current subkey or primary key. (drop-subkey)

primary
Boolean indicating whether the user id is the primary one. (keep-uid)

expired
Boolean indicating whether a user id (keep-uid), akey (drop-subkey), or asignature (drop-sig)
expired.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

revoked
Boolean indicating whether auser id (keep-uid) or akey (drop-subkey) has been revoked.

disabled
Boolean indicating whether a primary key is disabled.

secret
Boolean indicating whether akey or subkey is a secret one. (drop-subkey)

usage
A string indicating the usage flags for the subkey, from the sequence *‘ecsa?’. For example, a
subkey capable of just signing and authentication would be an exact match for ‘*sa’’. (drop-
subkey)

sig_created

sig created d
Thefirst is the timestamp a signature packet was created. The second is the same but given as
an 1S0O date string, e.g. "2016-08-17". (drop-sig)

sig_expires

sig_expires d
The expiration time of a signature packet or O if it does not expire. The second is the same but
given as an | SO date string or an empty string e.g. "2038-01-19".

sig_algo
A number with the public key algorithm of a signature packet. (drop-sig)

sig_digest_algo
A number with the digest algorithm of a signature packet. (drop-sig)

origin
A string with the key origin or aquestion mark. For example the string *‘wkd’’ isused if a

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1)

GNU Privacy Guard 2.4 GPG(1)

key originated from a Web Key Directory lookup.

lastupd
The timestamp the key was |ast updated from a keyserver or the Web Key Directory.

url A string with the the URL associated wit the last key lookup.

--expor t-options parameters

Thisis a space or comma delimited string that gives options for exporting keys. Options can be
prepended with a‘no-’ to give the opposite meaning. The options are:

export-local-sigs
Allow exporting key signatures marked as "local". Thisis not generally useful unless a shared
keyring schemeis being used. Defaultsto no.

export-attributes
Include attribute user 1Ds (photo 1Ds) while exporting. Not including attribute user IDsis
useful to export keys that are going to be used by an OpenPGP program that does not accept
attribute user IDs. Defaults to yes.

export-sensitive-revkeys
Include designated revoker information that was marked as "sensitive". Defaults to no.

backup

export-backup
Export for use as a backup. The exported dataincludes all datawhich is needed to restore the
key or keys later with GnuPG. The format is basically the OpenPGP format but enhanced
with GnuPG specific data. All other contradicting options are overridden.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

export-clean
Compact (remove al signatures from) user I1Ds on the key being exported if the user IDs are
not usable. Also, do not export any signatures that are not usable. This includes signatures that
were issued by keysthat are not present on the keyring. This option is the same as running the
--edit-key command "clean" before export except that the local copy of the key is not
modified. Defaults to no.

export-minimal
Export the smallest key possible. Thisremoves all signatures except the most recent self-
signature on each user ID. This option is the same as running the --edit-key command
"minimize" before export except that the local copy of the key is not modified. Defaults to no.

export-revocs
Export only standalone revocation certificates of the key. This option does not export
revocations of 3rd party certificate revocations.

export-dane
Instead of outputting the key material output OpenPGP DANE records suitable to put into
DNS zonefiles. An ORIGIN lineis printed before each record to allow diverting the records
to the corresponding zonefile.

model003
Enable the use of anew secret key export format. This format avoids the re-encryption as
required with the current OpenPGP format and al so improves the security of the secret key if it
has been protected with a passphrase. Note that an unprotected key is exported as-is and thus
not secure; the general rule to convey secret keys in an OpenPGP encrypted file still applies
with thismode. Versions of GnuPG before 2.4.0 are not able to import such a secret file.

--with-colons
Print key listings delimited by colons. Note that the output will be encoded in UTF-8 regardless of
any --display-charset setting. Thisformat is useful when GnuPG is called from scripts and other
programs asit is easily machine parsed. The details of thisformat are documented in the file
‘doc/DETAILS, which isincluded in the GnuPG source distribution.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

--fixed-list-mode
Do not merge primary user ID and primary key in --with-colon listing mode and print all
timestamps as seconds since 1970-01-01. Since GnuPG 2.0.10, this mode is aways used and thus
this option is obsolete; it does not harm to use it though.

--legacy-list-mode
Revert to the pre-2.1 public key list mode. This only affects the human readable output and not the
machine interface (i.e. --with-colons). Note that the legacy format does not convey suitable
information for eliptic curves.

--with-fingerprint
Same as the command --finger print but changes only the format of the output and may be used
together with another command.

--with-subkey-finger print
If afingerprint is printed for the primary key, this option forces printing of the fingerprint for all
subkeys. This could also be achieved by using the --with-finger print twice but by using this option
along with keyid-format "none" a compact fingerprint is printed.

--with-v5-fingerprint
In acolon mode listing emit "fp2" lines for version 4 OpenPGP keys having av5 style fingerprint
of the key.

--with-icao-spelling
Print the ICAO spelling of the fingerprint in addition to the hex digits.

--with-keygrip
Include the keygrip in the key listings. In --with-colons mode thisisimplicitly enable for secret
keys.

--with-key-origin
Include the locally held information on the origin and last update of akey in akey listing. In
--with-colons mode thisis always printed. Thisdatais currently experimental and shall not be

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

considered part of the stable API.

--with-wkd-hash
Print aWeb Key Directory identifier along with each user ID in key listings. Thisisan
experimental feature and semantics may change.

--with-secr et
Include info about the presence of a secret key in public key listings done with --with-colons.

OpenPGP protocol specific options

--for ce-och

--for ce-aead
Force the use of AEAD encryption over MDC encryption. AEAD isamodern and faster way to
do authenticated encryption than the old MDC method. --force-aead is an alias and deprecated.
See also option --chunk-size.

--force-mdc

--disable-mdc
These options are obsol ete and have no effect since GnuPG 2.2.8. The MDC is aways used unless
the keysindicate that an AEAD algorithm can be used in which case AEAD isused. But note: If
the creation of alegacy non-MDC message is exceptionally required, the option --rfc2440 allows
for this.

--disable-signer -uid
By default the user 1D of the signing key is embedded in the data signature. As of now thisisonly
done if the signing key has been specified with local-user using a mail address, or with sender.
This information can be helpful for verifier to locate the key; see option --auto-key-retrieve.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

--include-key-block

--no-include-key-block
This option is used to embed the actual signing key into a data signature. The embedded key is
stripped down to asingle user id and includes only the signing subkey used to create the signature
aswell asasvalid encryption subkeys. All other info isremoved from the key to keep it and thus
the signature small. This option is the OpenPGP counterpart to the gpgsm option --include-certs
and allows the recipient of a signed message to reply encrypted to the sender without using any
online directories to lookup the key. The default is--no-include-key-block. See also the option
--auto-key-import.

--per sonal-cipher -prefer ences string
Set the list of personal cipher preferencesto string. Use gpg --version to get alist of available
algorithms, and use noneto set no preference at al. This allows the user to safely override the
algorithm chosen by the recipient key preferences, as GPG will only select an algorithm that is
usable by all recipients. The most highly ranked cipher in thislist is also used for the --symmetric
encryption command.

--per sonal-digest-pr efer ences string
Set the list of personal digest preferencesto string. Use gpg --version to get alist of available
algorithms, and use noneto set no preference at al. This allows the user to safely override the
algorithm chosen by the recipient key preferences, as GPG will only select an algorithm that is
usable by all recipients. The most highly ranked digest algorithm in thislist is aso used when
signing without encryption (e.g. --clear-sign or --sign).

--per sonal-compr ess-pr efer ences string
Set the list of personal compression preferencesto string. Use gpg --version to get alist of
available algorithms, and use none to set no preference at all. This allows the user to safely
override the algorithm chosen by the recipient key preferences, as GPG will only select an
algorithm that is usable by al recipients. The most highly ranked compression algorithm in this
list is aso used when there are no recipient keys to consider (e.g. --symmetric).

--s2k-cipher-algo name
Use name as the cipher algorithm for symmetric encryption with a passphrase if
--per sonal-cipher -preferences and --cipher -algo are not given. The default is AES-128.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

--s2k-digest-algo name
Use name as the digest algorithm used to mangle the passphrases for symmetric encryption. The
default is SHA-1.

--s2k-moden
Selects how passphrases for symmetric encryption are mangled. If nis 0 aplain passphrase (which
isin general not recommended) will be used, a1 adds a salt (which should not be used) to the
passphrase and a 3 (the default) iterates the whole process a number of times (see --s2k-count).

--s2k-count n
Specify how many times the passphrases mangling for symmetric encryption isrepeated. This
value may range between 1024 and 65011712 inclusive. The default isinquired from gpg-agent.
Note that not all valuesin the 1024-65011712 range are legal and if anillegal value is selected,
GnuPG will round up to the nearest legal value. This option is only meaningful if --s2k-modeis
set to the default of 3.

Compliance options

These options control what GnuPG is compliant to. Only one of these options may be active at atime.
Note that the default setting of thisis nearly always the correct one. See the INTEROPERABILITY
WITH OTHER OPENPGP PROGRAMS section below before using one of these options.

--gnupg
Use standard GnuPG behavior. Thisis essentially OpenPGP behavior (see --openpgp), but with

extension from the proposed update to OpenPGP and with some additional workarounds for
common compatibility problemsin different versions of PGP. Thisisthe default option, soitis
not generally needed, but it may be useful to override a different compliance option in the gpg.conf
file.

--Openpgp

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

Reset all packet, cipher and digest options to strict OpenPGP behavior. This option implies
--allow-old-cipher-algos. Use this option to reset all previous options like --s2k-*, --cipher-algo,
--digest-algo and --compr ess-algo to OpenPGP compliant values. All PGP workarounds are
disabled.

--rfc4880
Reset al packet, cipher and digest options to strict RFC-4880 behavior. This option implies
--allow-old-cipher-algos. Note that thisis currently the same thing as --openpgp.

--rfc4880bis
Reset all packet, cipher and digest options to strict according to the proposed updates of
RFC-4880.

--rfc2440
Reset all packet, cipher and digest options to strict RFC-2440 behavior. Note that by using this
option encryption packets are created in alegacy mode without MDC protection. Thisis
dangerous and should thus only be used for experiments. This option implies
--allow-old-cipher-algos. See also option --ignore-mdc-error.

--pgp6
This option is obsolete; it is handled as an alias for --pgp7

--pgp7/
Set up all optionsto be as PGP 7 compliant as possible. This allowed the ciphers IDEA, 3DES,

CAST5,AES128, AES192, AES256, and TWOFISH., the hashes MD5, SHA1 and RIPEMD160,
and the compression algorithms none and ZIP. This option implies --escape-from-lines and
disables --throw-keyids,

--pgp8
Set up al optionsto be as PGP 8 compliant as possible. PGP 8 is alot closer to the OpenPGP

standard than previous versions of PGP, so all this doesis disable --thr ow-keyids and set
--escape-from-lines. All agorithms are allowed except for the SHA224, SHA384, and SHA512
digests.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

--compliance string
This option can be used instead of one of the options above. Valid values for string are the above
option names (without the double dash) and possibly others as shown when using "help" for string.

--min-rsa-length n
This option adjusts the compliance mode "de-vs' for stricter key size requirements. For example, a
value of 3000 turns rsa2048 and dsa2048 keys into non-VS-NfD compliant keys.

--require-compliance
To check that data has been encrypted according to the rules of the current compliance mode, a
gpg user needsto evaluate the status lines. Thisis allows frontends to handle compliance check in
amore flexible way. However, for scripted use the required evaluation of the status-line requires
quite some effort; this option can be used instead to make sure that the gpg process exits with a
failureif the compliance rules are not fulfilled. Note that this option has currently an effect only in
"de-vs' mode.

Doing things one usually doesn’t want to do

-n
--dry-run
Don't make any changes (thisis not completely implemented).

--list-only
Changes the behaviour of some commands. Thisislike --dry-run but different in some cases. The
semantic of this option may be extended in the future. Currently it only skips the actual decryption
pass and therefore enables afast listing of the encryption keys.

-i
--interactive

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1)

GNU Privacy Guard 2.4 GPG(1)

Prompt before overwriting any files.

--compatibility-flags flags

Set compatibility flags to work around problems due to non-compliant keys or data. The flags are
given as a comma separated list of flag names and are OR-ed together. The special flag "none"
clearsthelist and allows one to start over with an empty list. To get alist of available flags the
sole word "help" can be used.

--debug-leve level

Select the debug level for investigating problems. level may be a numeric value or by a keyword:

none
No debugging at al. A value of lessthan 1 may be used instead of the keyword.

basic
Some basic debug messages. A value between 1 and 2 may be used instead of the keyword.

advanced
More verbose debug messages. A value between 3 and 5 may be used instead of the keyword.

expert
Even more detailed messages. A value between 6 and 8 may be used instead of the keyword.

guru
All of the debug messages you can get. A value greater than 8 may be used instead of the
keyword. The creation of hash tracing filesis only enabled if the keyword is used.

How these messages are mapped to the actual debugging flagsis not specified and may change with
newer releases of this program. They are however carefully selected to best aid in debugging.

--debug flags

Set debug flags. All flags are or-ed and flags may be given in C syntax (e.g. 0x0042) or asa
comma separated list of flag names. To get alist of al supported flags the single word "help" can
be used. This option isonly useful for debugging and the behavior may change at any time without
notice.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

--debug-all
Set all useful debugging flags.

--debug-iolbf
Set stdout into line buffered mode. This option is only honored when given on the command line.

--debug-set-iobuf-size n
Change the buffer size of the IOBUFsto n kilobyte. Using O printsthe current size. Note well:
Thisis amaintainer only option and may thus be changed or removed at any time without notice.

--debug-allow-lar ge-chunks
To facilitate software tests and experiments this option allows one to specify alimit of up to 4 EiB
(--chunk-size 62).

--debug-ignor e-expiration
This option tries to override certain key expiration dates. It isonly useful for certain regression
tests.

--faked-system-time epoch
Thisoption is only useful for testing; it sets the system time back or forth to epoch which isthe
number of seconds elapsed since the year 1970. Alternatively epoch may be given asafull 1SO
time string (e.g. "20070924T154812").

If you suffix epoch with an exclamation mark (!), the system time will appear to be frozen at the
specified time.

--full-timestrings
Change the format of printed creation and expiration times from just the date to the date and time.
Thisisin general not useful and the same information is anyway available in --with-colons mode.
These longer strings are also not well aligned with other printed data.

--enable-progress-filter
Enable certain PROGRESS status outputs. This option allows frontends to display a progress

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

indicator while gpg is processing larger files. Thereisadight performance overhead using it.

--status-fd n
Write special status strings to the file descriptor n. See the file DETAILS in the documentation for
alisting of them.

--status-filefile
Same as --status-fd, except the status datais written to file file.

--logger-fd n
Write log output to file descriptor n and not to STDERR.

--log-filefile
--logger -filefile
Same as --logger -fd, except the logger datais writtento filefile. Use ‘socket://’ to log to s socket.

--log-time
Prefix all log output with atimestamp even if nolog fileis used.

--attribute-fd n
Write attribute subpackets to the file descriptor n. Thisis most useful for use with --status-fd, since
the status messages are needed to separate out the various subpackets from the stream delivered to
the file descriptor.

--attribute-filefile
Same as --attribute-fd, except the attribute datais written to file file.

--comment string

--no-comments
Use string as a comment string in cleartext signatures and ASCII armored messages or keys (see
--armor). The default behavior is not to use a comment string. --comment may be repeated multiple
times to get multiple comment strings. --no-comments removes all comments. It isagood ideato

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

keep the length of a single comment below 60 charactersto avoid problems with mail programs
wrapping such lines. Note that comment lines, like all other header lines, are not protected by the
signature.

--emit-version

--no-emit-version
Forceinclusion of the version string in ASCII armored output. If given once only the name of the
program and the major number is emitted, given twice the minor is also emitted, given thrice the
micro is added, and given four times an operating system identification is also emitted.
--no-emit-version (default) disables the version line.

--sig-notation {name=value}

--cert-notation {name=value}

-N, --set-notation {name=value}
Put the name value pair into the signature as notation data. hame must consist only of printable
characters or spaces, and must containa’ @’ character in the form
keyname@domain.example.com (substituting the appropriate keyname and domain name, of
course). Thisisto help prevent pollution of the IETF reserved notation namespace. The --expert
flag overridesthe’ @' check. value may be any printable string; it will be encoded in UTF-8, so
you should check that your --display-charset is set correctly. If you prefix name with an
exclamation mark (1), the notation datawill be flagged as critical (rfc4880:5.2.3.16). --sig-notation
sets anotation for data signatures. --cert-notation sets a notation for key signatures (certifications).
--set-notation sets both.

There are special codes that may be used in notation names. "%Kk" will be expanded into the key ID
of the key being signed, "%K" into the long key 1D of the key being signed, "%f" into the
fingerprint of the key being signed, "%s" into the key ID of the key making the signature, "%S"
into the long key 1D of the key making the signature, "%g" into the fingerprint of the key making
the signature (which might be a subkey), "%p" into the fingerprint of the primary key of the key
making the signature, "%c" into the signature count from the OpenPGP smartcard, and "%%"
resultsin asingle "%". %k, %K, and %f are only meaningful when making a key signature
(certification), and %c is only meaningful when using the OpenPGP smartcard.

--known-notation name
Adds nameto alist of known critical signature notations. The effect of thisisthat gpg will not
mark a signature with acritical signature notation of that name as bad. Note that gpg already
knows by default about afew critical signatures notation names.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

--sig-policy-url string

--cert-policy-url string

--set-policy-url string
Use string as a Policy URL for signatures (rfc4880:5.2.3.20). If you prefix it with an exclamation
mark (1), the policy URL packet will be flagged as critical. --sig-policy-url setsapolicy url for data
signatures. --cert-policy-url setsapolicy url for key signatures (certifications). --set-policy-url sets
both.

The same %-expandos used for notation data are available here as well.

--sig-keyserver-url string
Use string as a preferred keyserver URL for data signatures. If you prefix it with an exclamation
mark (1), the keyserver URL packet will be flagged as critical.

The same %-expandos used for notation data are available here as well.

--set-filename string
Use string as the filename which is stored inside messages. This overrides the default, whichisto
use the actual filename of the file being encrypted. Using the empty string for string effectively
removes the filename from the outpui.

--for-your-eyes-only

--no-for-your-eyes-only
Set the ‘for your eyes only’ flag in the message. This causes GnuPG to refuse to save thefile
unless the --output option is given, and PGP to use a"secure viewer" with a claimed Tempest-
resistant font to display the message. This option overrides --set-filename. --no-for-your-eyes-only
disables this option.

--use-embedded-filename

--no-use-embedded-filename
Try to create afile with aname as embedded in the data. This can be a dangerous option as it
enables overwriting files by giving the sender control on how to store files. Defaultsto no. Note
that the option --output overrides this option.

A better approach than using this option is to decrypt to a temporary filename and then rename that
file to the embedded file name after checking that the embedded filename is harmless. When using

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

the --status-fd option gpg tells the filename as part of the PLAINTEXT status message. If the
filename isimportant, the use of gpgtar is another option because gpgtar will never overwrite afile
but decrypt the files to a new directory.

Note also that unless a modern version 5 signature is used the embedded filename is not part of the
signed data.

--cipher-algo name
Use name as cipher algorithm. Running the program with the command --ver sion yields alist of
supported algorithms. If thisis not used the cipher algorithm is selected from the preferences
stored with the key. In general, you do not want to use this option asiit allows you to violate the
OpenPGP standard. The option --per sonal-cipher -pr efer encesis the safe way to accomplish the
same thing.

--digest-algo name
Use name as the message digest algorithm. Running the program with the command --ver sion
yields alist of supported algorithms. In general, you do not want to use this option asit allows you
to violate the OpenPGP standard. The option --per sonal-digest-pr efer ences is the safe way to
accomplish the same thing.

--compress-algo name
Use compression algorithm name. "zlib" is RFC-1950 ZL 1B compression. "zip" is RFC-1951 ZIP
compression which is used by PGP. "bzip2" is a more modern compression scheme that can
compress some things better than zip or zlib, but at the cost of more memory used during
compression and decompression. "uncompressed” or "none" disables compression. If this optionis
not used, the default behavior is to examine the recipient key preferences to see which algorithms
the recipient supports. If al elsefails, ZIP isused for maximum compatibility.

ZLIB may give better compression results than ZIP, as the compression window sizeis not limited
to 8k. BZIP2 may give even better compression results than that, but will use asignificantly larger
amount of memory while compressing and decompressing. This may be significant in low memory
situations. Note, however, that PGP (all versions) only supports ZIP compression. Using any
algorithm other than ZIP or "none" will make the message unreadable with PGP. In general, you
do not want to use this option asit allows you to violate the OpenPGP standard. The option

--per sonal-compr ess-pr efer ences is the safe way to accomplish the same thing.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

--cert-digest-algo name
Use name as the message digest algorithm used when signing a key. Running the program with the
command --version yields alist of supported algorithms. Be aware that if you choose an algorithm
that GnuPG supports but other OpenPGP implementations do not, then some users will not be able
to use the key signatures you make, or quite possibly your entire key. Note also that a public key
algorithm must be compatible with the specified digest algorithm; thus selecting an arbitrary digest
algorithm may result in error messages from lower crypto layers or lead to security flaws.

--disable-cipher-algo name
Never allow the use of name as cipher algorithm. The given name will not be checked so that a
later loaded algorithm will still get disabled.

--disable-pubkey-algo name
Never alow the use of name as public key algorithm. The given name will not be checked so that
alater loaded algorithm will still get disabled.

--throw-keyids

--no-throw-keyids
Do not put the recipient key 1Ds into encrypted messages. This helps to hide the receivers of the
message and is a limited countermeasure against traffic analysis. ([Using alittle social engineering
anyone who is able to decrypt the message can check whether one of the other recipientsis the one
he suspects.]) On the receiving side, it may slow down the decryption process because al
available secret keys must be tried. --no-throw-keyids disables this option. This optionis
essentially the same as using --hidden-recipient for al recipients.

--not-dash-escaped
This option changes the behavior of cleartext signatures so that they can be used for patch files.
Y ou should not send such an armored file viaemail because al spaces and line endings are hashed
too. Y ou can not use this option for data which has 5 dashes at the beginning of aline, patch files
don't have this. A special armor header line tells GnuPG about this cleartext signature option.

--escape-from-lines
--no-escape-from-lines
Because some mailers change lines starting with "From " to ">From " it is good to handle such

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1)

GNU Privacy Guard 2.4 GPG(1)

linesin a specia way when creating cleartext signatures to prevent the mail system from breaking
the signature. Note that all other PGP versions do it thisway too. Enabled by default.
--no-escape-from-lines disables this option.

--passphrase-repeat n

Specify how many times gpg will request a new passphrase be repeated. Thisis useful for helping
memorize a passphrase. Defaults to 1 repetition; can be set to 0 to disable any passphrase
repetition. Note that an greater than 1 will pop up the pinentry window n+1 times even if a
modern pinentry with two entry fieldsis used.

--passphrase-fd n

Read the passphrase from file descriptor n. Only the first line will be read from file descriptor n. If
you use 0 for n, the passphrase will be read from STDIN. This can only be used if only one
passphrase is supplied.

Note that since Version 2.0 this passphraseis only used if the option --batch has also been given.
Since Version 2.1 the --pinentry-mode also needs to be set to loopback.

--passphrase-filefile

Read the passphrase from file file. Only the first line will be read from filefile. This can only be
used if only one passphrase is supplied. Obviously, a passphrase stored in afileis of questionable
security if other users can read thisfile. Don’t use this option if you can avoid it.

Note that since Version 2.0 this passphraseis only used if the option --batch has also been given.
Since Version 2.1 the --pinentry-mode also needs to be set to loopback.

--passphrase string

Use string as the passphrase. This can only be used if only one passphrase is supplied. Obviously,
thisis of very questionable security on a multi-user system. Don't use this option if you can avoid
it.

Note that since Version 2.0 this passphraseis only used if the option --batch has also been given.
Since Version 2.1 the --pinentry-mode also needs to be set to loopback.

--pinentry-mode mode

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

Set the pinentry mode to mode. Allowed values for mode are:

default
Use the default of the agent, which is ask.

ask Forcethe use of the Pinentry.

cancel
Emulate use of Pinentry’s cancel button.

error
Return a Pinentry error (‘*No Pinentry’’).

loopback
Redirect Pinentry queriesto the caller. Note that in contrast to Pinentry the user is not
prompted again if he enters a bad password.

--no-symkey-cache
Disable the passphrase cache used for symmetrical en- and decryption. This cache is based on the
message specific salt value (cf. --s2k-mode).

--request-origin origin
Tell gpg to assume that the operation ultimately originated at origin. Depending on the origin
certain restrictions are applied and the Pinentry may include an extra note on the origin. Supported
valuesfor origin are: local which isthe default, remote to indicate aremote origin or browser for
an operation requested by aweb browser.

--command-fd n
Thisis areplacement for the deprecated shared-memory IPC mode. If this option is enabled, user
input on questions is not expected from the TTY but from the given file descriptor. It should be
used together with --status-fd. See the file doc/DETAILS in the source distribution for details on
how to use it.

--command-filefile
Same as --command-fd, except the commands are read out of filefile

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

--allow-non-selfsigned-uid

--no-allow-non-selfsigned-uid
Allow the import and use of keys with user IDswhich are not self-signed. Thisis not
recommended, as anon self-signed user ID istrivial to forge. --no-allow-non-selfsigned-uid
disables.

--allow-fr eefor m-uid
Disable al checks on the form of the user ID while generating a new one. This option should only
be used in very specia environments as it does not ensure the de-facto standard format of user IDs.

--ignor e-time-conflict
GnuPG normally checks that the timestamps associated with keys and signatures have plausible
values. However, sometimes a signature seems to be older than the key due to clock problems.
This option makes these checks just awarning. See also --ignor e-valid-from for timestamp issues
on subkeys.

--ignor e-valid-from
GnuPG normally does not select and use subkeys created in the future. This option allows the use
of such keys and thus exhibits the pre-1.0.7 behaviour. Y ou should not use this option unless there
is some clock problem. See also --ignor e-time-conflict for timestamp issues with signatures.

--ignore-crc-error
The ASCII armor used by OpenPGP is protected by a CRC checksum against transmission errors.
Occasionally the CRC gets mangled somewhere on the transmission channel but the actual content
(which is protected by the OpenPGP protocol anyway) is still okay. This option allows GnuPG to
ignore CRC errors.

--ignore-mdc-error
This option changes aMDC integrity protection failure into awarning. It isrequired to decrypt old
messages which did not use an MDC. It may also be useful if amessageis partially garbled, but it
is necessary to get as much data as possible out of that garbled message. Be aware that amissing
or failed MDC can be an indication of an attack. Use with great caution; see also option --r fc2440.

--allow-old-cipher-algos

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

Old cipher algorithmslike 3DES, IDEA, or CAST5 encrypt data using blocks of 64 bits; modern
algorithms use blocks of 128 bit instead. To avoid certain attack on these old algorithmsiit is
suggested not to encrypt more than 150 MiByte using the same key. For this reason gpg does not
alow the use of 64 bit block size algorithms for encryption unless this option is specified.

--allow-weak-digest-algos
Signatures made with known-weak digest algorithms are normally rejected with an ‘‘invalid digest
algorithm’’ message. This option alows the verification of signatures made with such weak
algorithms. MD5 isthe only digest algorithm considered weak by default. See also --weak-digest
to reject other digest algorithms.

--weak-digest name
Treat the specified digest algorithm asweak. Signatures made over weak digests algorithms are
normally rejected. This option can be supplied multiple times if multiple algorithms should be
considered weak. See also --allow-weak-digest-algos to disable rejection of weak digests. MD5is
always considered weak, and does not need to be listed explicitly.

--allow-weak-key-signatures
To avoid aminor risk of collision attacks on third-party key signatures made using SHA-1, those
key signatures are considered invalid. This options allows one to override this restriction.

--override-compliance-check
This was atemporary introduced option and has no more effect.

--no-default-keyring
Do not add the default keyring to the list of keyrings. Note that GhuPG needs for amost all
operations akeyring. Thusif you use this option and do not provide aternate keyrings via
--keyring, then GnuPG will still use the default keyring.

Note that if the option use-keyboxd is enabled in ‘ common.conf’, no keyrings are used at all and
keys are all maintained by the keyboxd processin its own database.

--no-keyring
Do not use any keyring at all. This overrides the default and all options which specify keyrings.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

--skip-verify
Skip the signature verification step. This may be used to make the decryption faster if the signature
verification is not needed.

--with-key-data
Print key listings delimited by colons (like --with-colons) and print the public key data.

--list-signatures

--list-sigs
Same as --list-keys, but the signatures are listed too. This command has the same effect as using
--list-keys with --with-sig-list. Notethat in contrast to --check-signatur es the key signatures are
not verified. Thiscommand can be used to create alist of signing keys missing in the local
keyring; for example:

gpg --list-sigs --with-colons USERID |\
awk -F: '$1=="s8ig" && $2=="7" {if($13){ print $13} else{ print $5}}"

--fast-list-mode
Changes the output of the list commands to work faster; thisis achieved by leaving some parts
empty. Some applications don't need the user ID and the trust information given in the listings. By
using this options they can get afaster listing. The exact behaviour of this option may change in
future versions. If you are missing some information, don’t use this option.

--no-literal
Thisis not for normal use. Use the source to see for what it might be useful.

--set-filesize
Thisisnot for normal use. Use the source to see for what it might be useful.

--show-session-key
Display the session key used for one message. See --override-session-key for the counterpart of
this option.

Wethink that Key Escrow is a Bad Thing; however the user should have the freedom to decide

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

whether to go to prison or to reveal the content of one specific message without compromising all
messages ever encrypted for one secret key.

Y ou can also use this option if you receive an encrypted message which is abusive or offensive, to
prove to the administrators of the messaging system that the ciphertext transmitted corresponds to
an inappropriate plaintext so they can take action against the offending user.

--override-session-key string

--override-session-key-fd fd
Don't use the public key but the session key string respective the session key taken from the first
line read from file descriptor fd. The format of this string is the same as the one printed by
--show-session-key. This option is normally not used but comes handy in case someone forces you
to reveal the content of an encrypted message; using this option you can do this without handing
out the secret key. Note that using --over ride-session-key may reveal the session key to all local
users viathe global processtable. Often it isuseful to combine this option with --no-keyring.

--ask-sig-expire

--no-ask-sig-expire
When making a data signature, prompt for an expiration time. If this option is not specified, the
expiration time set via --default-sig-expir e is used. --no-ask-sig-expir e disables this option.

--default-sig-expire
The default expiration time to use for signature expiration. Valid values are "0" for no expiration, a
number followed by the letter d (for days), w (for weeks), m (for months), or y (for years) (for
example "2m" for two months, or "5y" for five years), or an absolute date intheform YYYY-MM-
DD. Defaultsto "0".

--ask-cert-expire

--no-ask-cert-expire
When making a key signature, prompt for an expiration time. If this option is not specified, the
expiration time set via--default-cert-expire is used. --no-ask-cert-expir e disables this option.

--default-cert-expire
The default expiration time to use for key signature expiration. Valid valuesare"0" for no
expiration, a number followed by the letter d (for days), w (for weeks), m (for months), or y (for

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

years) (for example"2m" for two months, or "5y" for five years), or an absolute date in the form
YYYY-MM-DD. Defaultsto "0".

--default-new-key-algo string
This option can be used to change the default algorithms for key generation. The string is similar to
the arguments required for the command --quick-add-key but slightly different. For example the
current default of " rsa2048/cert,sign+rsa2048/encr” (or " rsa3072") can be changed to the value of
what we currently call future default, which is" ed25519/cert,sign+cv25519/encr” . Y ou need to
consult the source code to learn the details. Note that the advanced key generation commands can
always be used to specify akey algorithm directly.

--no-auto-trust-new-key
When creating a new key the ownertrust of the new key is set to ultimate. This option disables this
and the user needs to manually assign an ownertrust value.

--force-sign-key
This option modifies the behaviour of the commands --quick-sign-key, --quick-lsign-key, and the
"sign" sub-commands of --edit-key by forcing the creation of akey signature, even if one aready
exists.

--forbid-gen-key
Thisoption isintended for usein the global config file to disallow the use of generate key
commands. Thaose commands will then fail with the error code for Not Enabled.

--allow-secr et-key-import
Thisis an obsolete option and is not used anywhere.

--allow-multiple-messages
--no-allow-multiple-messages

These are obsol ete options; they have no more effect since GnuPG 2.2.8.

--enable-special-filenames

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

This option enables amode in which filenames of the form *-&n’, where nis a non-negative
decimal number, refer to the file descriptor n and not to afile with that name.

--no-expensive-trust-checks
Experimental use only.

--pr eserve-permissions
Don't change the permissions of a secret keyring back to user read/write only. Use this option only
if you really know what you are doing.

--default-preference-list string
Set the list of default preferencesto string. This preference list is used for new keys and becomes
the default for "setpref" in the --edit-key menu.

--default-keyserver-url name
Set the default keyserver URL to name. This keyserver will be used as the keyserver URL when
writing a new self-signature on a key, which includes key generation and changing preferences.

--list-config
Display variousinternal configuration parameters of GnuPG. This option isintended for external
programs that call GnuPG to perform tasks, and is thus not generally useful. See the file
‘doc/DETAILS in the source distribution for the details of which configuration items may be
listed. --list-config is only usable with --with-colons set.

--list-gcrypt-config
Display variousinternal configuration parameters of Libgcrypt.

--gpgconf-list
This command is similar to --list-config but in general only internally used by the gpgconf tool.

--gpgconf-test
Thisis more or less dummy action. However it parses the configuration file and returns with

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

failure if the configuration file would prevent gpg from startup. Thusit may be used to run a
syntax check on the configuration file.

--chuid uid
Change the current user to uid which may either be anumber or aname. This can be used from the
root account to run gpg for another user. If uid is not the current UID a standard PATH is set and
the envvar GNUPGHOME isunset. To override the latter the option --homedir can be used. This
option has only an effect when used on the command line. This option has currently no effect at
al on Windows.

Depr ecated options

-t, --textmode

--no-textmode
Treat input files as text and store them in the OpenPGP canonical text form with standard "CRLF"
line endings. This also sets the necessary flags to inform the recipient that the encrypted or signed
datais text and may need its line endings converted back to whatever the local system uses. This
option was useful when communicating between two platforms with different line ending
conventions (UNIX-liketo Mac, Mac to Windows, etc). --no-textmode disables this option, and is
the default. Note that thisis alegacy option which should not anymore be used by any modern
software.

--force-v3-sigs
--no-force-v3-sigs
--force-v4-certs

--no-for ce-v4-certs
These options are obsol ete and have no effect since GnuPG 2.1.

--show-photos

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

--no-show-photos
Causes --list-keys, --list-signatures, --list-public-keys, --list-secr et-keys, and verifying a signature
to also display the photo ID attached to the key, if any. See also --photo-viewer. These options are
deprecated. Use --list-options [no-]show-photos and/or --verify-options [no-]show-photos instead.

--show-keyring
Display the keyring name at the head of key listings to show which keyring a given key resides on.
This option is deprecated: use --list-options [no-]show-keyring instead.

--show-notation

--no-show-notation
Show signature notationsin the --list-signatur es or --check-signatures listings as well as when
verifying a signature with a notation in it. These options are deprecated. Use --list-options
[no-]show-notation and/or --verify-options [no-]show-notation instead.

--show-policy-url

--no-show-policy-url
Show policy URLsin the --list-signatur es or --check-signatur es listings as well as when verifying a
signature with apolicy URL in it. These options are deprecated. Use --list-options
[no-]show-policy-url and/or --verify-options [no-]show-policy-url instead.

--per sonal-aead-pr efer ences string
This option is deprecated and has no more effect since version 2.3.9.

--aead-algo name
This option is deprecated and has no more effect since version 2.3.9.

EXAMPLES
gpg -se-r Baob file
sign and encrypt for user Bob

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

gpg --clear-sign file
make a cleartext signature

gpg -sb file
make a detached signature

gpg -u 0x12345678 -sb file
make a detached signature with the key 0x12345678

gpg --list-keysuser _ID
show keys

gpg --fingerprint user_ID
show fingerprint

gpg --verify pgpfile

gpg --verify sigfile [datafile]
Verify the signature of the file but do not output the data unless requested. The second formis
used for detached signatures, where sigfile is the detached signature (either ASCII armored or
binary) and datafile are the signed data; if thisis not given, the name of the file holding the signed
datais constructed by cutting off the extension (".asc" or ".sig") of sigfile or by asking the user for
the filename. If the option --output is also used the signed data is written to the file specified by
that option; use - to write the signed data to stdout.

HOW TO SPECIFY A USER ID
There are different ways to specify auser ID to GhuPG. Some of them are only valid for gpg others
areonly good for gpgsm. Hereisthe entirelist of ways to specify akey:

By key Id.
Thisformat is deduced from the length of the string and its content or Ox prefix. The key Id of an

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

X.509 certificate are the low 64 bits of its SHA-1 fingerprint. The use of key Idsisjust a shortcut,
for al automated processing the fingerprint should be used.

When using gpg an exclamation mark (1) may be appended to force using the specified primary or
secondary key and not to try and calculate which primary or secondary key to use.

The last four lines of the example give the key ID in their long form as internally used by the
OpenPGP protocoal. You can see the long key ID using the option --with-colons.

234567C4
OF34E556E
01347A56A
O0xAB123456

234AABBCC34567C4
0F323456784E56EAB
01AB3FED1347A5612
Ox234AABBCC34567C4

By fingerprint.
Thisformat is deduced from the length of the string and its content or the Ox prefix. Note, that
only the 20 byte version fingerprint is available with gpgsm (i.e. the SHA-1 hash of the certificate).

When using gpg an exclamation mark (!) may be appended to force using the specified primary or
secondary key and not to try and calculate which primary or secondary key to use.

The best way to specify akey Id is by using the fingerprint. Thisavoids any ambiguitiesin case
that there are duplicated key 1Ds.

1234343434343434C434343434343434
123434343434343C3434343434343734349A 3434
OE12343434343434343434EAB3484343434343434
OxE12343434343434343434EAB3484343434343434

gpgsm also accepts colons between each pair of hexadecimal digits because thisis the de-facto
standard on how to present X.509 fingerprints. gpg also allows the use of the space separated SHA-1

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

fingerprint as printed by the key listing commands.

By exact match on OpenPGP user ID.
Thisis denoted by aleading equal sign. It does not make sense for X.509 certificates.

=Heinrich Heine <heinrichh@uni-duessel dorf.de>

By exact match on an email address.
Thisisindicated by enclosing the email address in the usual way with left and right angles.

<heinrichh@uni-duesseldorf.de>

By partial match on an email address.
Thisisindicated by prefixing the search string with an @. This uses a substring search but
considers only the mail address (i.e. inside the angle brackets).

@heinrichh

By exact match on the subject’sDN.
Thisisindicated by aleading dash, directly followed by the RFC-2253 encoded DN of the subject.
Note that you can’t use the string printed by gpgsm --list-keys because that one has been reordered
and modified for better readability; use --with-colonsto print the raw (but standard escaped)
RFC-2253 string.

/CN=Heinrich Heine,O=Poets,L =Paris,C=FR
By exact match on theissuer’s DN.
Thisisindicated by aleading hash mark, directly followed by a slash and then directly followed by

the RFC-2253 encoded DN of theissuer. This should return the Root cert of theissuer. See note
above.

#/CN=Root Cert,0=Poets,L=Paris,C=FR

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

By exact match on serial number and issuer’s DN.
Thisisindicated by a hash mark, followed by the hexadecimal representation of the serial number,
then followed by a dlash and the RFC-2253 encoded DN of the issuer. See note above.

#4F03/CN=Root Cert,0=Poets,L=Paris,C=FR

By keygrip.
Thisisindicated by an ampersand followed by the 40 hex digits of akeygrip. gpgsm printsthe
keygrip when using the command --dump-cert.

& D75F22C3F86E355877348498CDC92BD21010A480

By substring match.
Thisis the default mode but applications may want to explicitly indicate this by putting the asterisk
infront. Match is not case sensitive.

Heine
*Heine

.and + prefixes
These prefixes are reserved for looking up mails anchored at the end and for aword search mode.
They are not yet implemented and using them is undefined.

Please note that we have reused the hash mark identifier which was used in old GnuPG versions to
indicate the so called local-id. It isnot anymore used and there should be no conflict when used
with X.509 stuff.

Using the RFC-2253 format of DNs has the drawback that it is not possible to map them back to
the original encoding, however we don’t have to do this because our key database stores this
encoding as meta data.

FILTER EXPRESSIONS
The options --import-filter and --export-filter use expressions with this syntax (square brackets indicate
an optional part and curly braces a repetition, white space between the elements are allowed):

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

[Ic] {[{flag}] PROPNAME op VALUE [Ic]}

The name of a property (PROPNAME) may only consist of letters, digits and underscores. The
description for the filter type describes which properties are defined. 1f an undefined property is used it
evaluates to the empty string. Unless otherwise noted, the VALUE must always be given and may not
be the empty string. No quoting is defined for the value, thus the value may not contain the strings & &
or ||, which are used as logical connection operators. The flag -- can be used to remove this restriction.

Numerical values are computed as long int; standard C notation applies. Icisthelogical connection
operator; either & & for aconjunction or || for adigunction. A conjunction is assumed at the begin of
an expression. Conjunctions have higher precedence than disunctions. If VALUE starts with one of
the characters used in any op a space after the op is required.

The supported operators (op) are:

=~ Substring must match.

I~ Substring must not match.

= Thefull string must match.

<> Thefull string must not match.

== The numerical value must match.

I= The numerical value must not match.

<= The numerical vaue of the field must be LE than the value.

< Thenumerica value of the field must be LT than the value.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

> Thenumerica vaue of the field must be GT than the value.

4
I

The numerical vaue of the field must be GE than the value.

-le The string value of the field must be less or equal than the value.

-It The string value of the field must be less than the value.

-gt The string value of the field must be greater than the value.

-ge The string value of the field must be greater or equal than the value.

-n Trueif valueis not empty (no value allowed).

-z Trueif valueis empty (no value allowed).

-t Aliasfor "PROPNAME != 0" (no value allowed).

-f Aliasfor "PROPNAME == 0" (no value allowed).

Vauesfor flag must be space separated. The supported flags are:

-~ VALUE spansto the end of the expression.
-c Thestring match in this part is done case-sensitive.

-t Leading and trailing spaces are not removed from VALUE. The optional single space after opis
here required.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

The filter options concatenate several specifications for afilter of the same type. For example the four
optionsin this example:

--import-filter keep-uid="uid =~ Alfa"
--import-filter keep-uid="& & uid !~ Test"
--import-filter keep-uid="|| uid =~ Alpha"
--import-filter keep-uid="uid !~ Test"

which is equivalent to

--import-filter \
keep-uid="uid =~ Alfa' && uid !~ Test" || uid =~ Alpha" && "uid !~ Test"

imports only the user ids of akey containing the strings "Alfa" or "Alpha" but not the string "test".

TRUST VALUES
Trust values are used to indicate ownertrust and validity of keys and user IDs. They are displayed with
letters or strings:

unknown
No ownertrust assigned / not yet calculated.

e
expired

Trust calculation has failed; probably due to an expired key.
q

undefined, undef
Not enough information for calculation.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

never
Never trust this key.

m
mar ginal
Marginaly trusted.

f
full Fully trusted.

u
ultimate
Ultimately trusted.

r
revoked
For validity only: the key or the user 1D has been revoked.

?
err The program encountered an unknown trust value.

FILES
There are afew configuration files to control certain aspects of gpg’s operation. Unless noted, they are
expected in the current home directory (see: [option --homedir]).

gpg.conf
Thisisthe standard configuration file read by gpg on startup. It may contain any valid long

option; the leading two dashes may not be entered and the option may not be abbreviated. This
default name may be changed on the command line (see: [gpg-option --options]). Y ou should
backup thisfile.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

common.conf
Thisisan optional configuration file read by gpg on startup. It may contain options pertaining to
al components of GnuPG. Its current main useisfor the "use-keyboxd" option. If the default
home directory ‘~/.gnupg’ does not exist, GnuPG creates this directory and a‘common.conf’ file
with "use-keyboxd".

Note that on larger installations, it is useful to put predefined files into the directory */etc/skel/.gnupg’
so that newly created users start up with aworking configuration. For existing users asmall helper
script is provided to create these files (see: [addgnupghome]).

For internal purposes gpg creates and maintains afew other files; They al livein the current home
directory (see: [option --homedir]). Only the gpg program may modify these files.

~/.gnupg
Thisis the default home directory which is used if neither the environment variable
GNUPGHOME nor the option --homedir is given.

~/.gnupg/pubring.gpg
The public keyring using a legacy format. Y ou should backup thisfile.

If thisfileis not available, gpg defaults to the new keybox format and creates afile ‘ pubring.kbx’
unlessthat file already exists in which case that file will also be used for OpenPGP keys.

Note that in the case that both files, * pubring.gpg’ and ‘ pubring.kbx’ exists but the latter has no
OpenPGP keys, the legacy file ‘ pubring.gpg’ will be used. Take care: GhuPG versions before 2.1
will always use the file ‘pubring.gpg’ because they do not know about the new keybox format. In
the case that you have to use GnuPG 1.4 to decrypt archived data you should keep thisfile.

~/.gnupg/pubring.gpg.lock
The lock file for the public keyring.

~/.gnupg/pubring.kbx
The public keyring using the new keybox format. Thisfileis shared with gpgsm. Y ou should
backup thisfile. See above for the relation between this file and it predecessor.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

To convert an existing ‘ pubring.gpg’ file to the keybox format, you first backup the ownertrust
values, then rename ‘pubring.gpg’ to ‘ publickeys.backup’, so it won't be recognized by any
GnuPG version, run import, and finally restore the ownertrust values:

$ cd ~/.gnupg

$ gpg --export-ownertrust >otrust.|st

$ mv pubring.gpg publickeys.backup

$ gpg --import-options restore --import publickeys.backup
$ gpg --import-ownertrust otrust.|st

~/.gnupg/pubring.kbx.lock
Thelock file for *pubring.kbx'.

~/.gnupg/secring.gpg
The legacy secret keyring as used by GnuPG versions before 2.1. 1t is not used by GnuPG 2.1 and
later. Y ou may want to keep it in case you have to use GnuPG 1.4 to decrypt archived data.

~/.gnupg/secring.gpg.lock
The lock file for the legacy secret keyring.

~/.gnupg/.gpg-v21-migrated
File indicating that a migration to GnuPG 2.1 has been done.

~/.gnupg/trustdb.gpg
The trust database. Thereisno need to backup thisfile; it is better to backup the ownertrust values
(see: [option --export-ownertrust]).

~/.gnupg/trustdb.gpg.lock
Thelock file for the trust database.

~/.gnupg/random_seed
A file used to preserve the state of the internal random pool.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

~/.gnupg/openpgp-revocs.d/
Thisisthe directory where gpg stores pre-generated revocation certificates. The file name
corresponds to the OpenPGP fingerprint of the respective key. It is suggested to backup those
certificates and if the primary private key is not stored on the disk to move them to an external
storage device. Anyone who can access these files is able to revoke the corresponding key. You
may want to print them out. Y ou should backup al filesin this directory and take care to keep this
backup closed away.

Operation is further controlled by afew environment variables:

HOME
Used to locate the default home directory.

GNUPGHOME
If set directory used instead of "~/.gnupg".

GPG_AGENT_INFO
Thisvariableis obsolete; it was used by GnuPG versions before 2.1.

PINENTRY_USER_DATA
Thisvalue is passed via gpg-agent to pinentry. It isuseful to convey extrainformation to a custom
pinentry.

COLUMNS
LINES
Used to size some displaysto the full size of the screen.

LANGUAGE
Apart from its use by GNU, it is used in the W32 version to override the language sel ection done
through the Registry. If used and set to avalid and available language name (langid), the file with
the trandation is loaded from gpgdir/gnupg.nls/langid.mo. Here gpgdir isthe directory out of
which the gpg binary has been loaded. If it can't be loaded the Registry istried and as last resort

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

the native Windows locale systemis used.

GNUPG_BUILD_ROOT
Thisvariableis only used by the regression test suite as a helper under operating systems without
proper support to figure out the name of a process’ text file.

GNUPG_EXEC_DEBUG_FLAGS
This variable alows one to enable diagnostics for process management. A numeric decimal value
isexpected. Bit 0 enables general diagnostics, bit 1 enables certain warnings on Windows.

When calling the gpg-agent component gpg sends a set of environment variables to gpg-agent. The
names of these variables can be listed using the command:

gpg-connect-agent ' getinfo std_env_names' /bye | awk ' $1=="D" { print $2}"

NOTES
gpg is often used as a backend engine by other software. To help with this a machine interface has
been defined to have an unambiguous way to do this. The options --status-fd and --batch are almost
always required for this.

Programmatic use of GnuPG

Please consider using GPGME instead of calling gpg directly. GPGME offers a stable, backend-
independent interface for many cryptographic operations. It supports OpenPGP and SMIME, and also
allows interaction with various GhuPG components.

GPGME provides a C-API, and comes with bindings for C++, Qt, and Python. Bindings for other
languages are available.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

Ephemeral homedirectories

Sometimes you want to contain effects of some operation, for example you want to import a key to
inspect it, but you do not want this key to be added to your keyring. In earlier versions of GnuPG, it
was possible to specify alternate keyring files for both public and secret keys. In modern GnuPG
versions, however, we changed how secret keys are stored in order to better protect secret key material,
and it was not possible to preserve thisinterface.

The preferred way to do thisis to use ephemeral home directories. This technique works across all
versions of GnuPG.

Create atemporary directory, create (or copy) a configuration that meets your needs, make gpg use this
directory either using the environment variable GNUPGHOME, or the option --homedir. GPGME
supports thistoo on a per-context basis, by maodifying the engine info of contexts. Now execute
whatever operation you like, import and export key material as hecessary. Once finished, you can
delete the directory. All GnhuPG backend services that were started will detect this and shut down.

The quick key manipulation interface

Recent versions of GnuPG have an interface to manipulate keys without using the interactive command
--edit-key. Thisinterface was added mainly for the benefit of GPGME (please consider using
GPGME, see the manual subsection *‘ Programmatic use of GhuPG'’). Thisinterface is described in
the subsection ‘* How to manage your keys'’.

Unattended key generation

The command --gener ate-key may be used along with the option --batch for unattended key generation.
Thisisthe most flexible way of generating keys, but it is also the most complex one. Consider using
the quick key manipulation interface described in the previous subsection ‘* The quick key

manipulation interface’’.

The parameters for the key are either read from stdin or given as afile on the command line. The
format of the parameter fileisasfollows: Text only, line length is limited to about 1000 characters.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

UTF-8 encoding must be used to specify non-ASCII characters. Empty lines are ignored. Leading and
trailing white spaceisignored. A hash sign asthe first non white space character indicates a comment
line. Control statements are indicated by aleading percent sign, their arguments are separated by white
space from the keyword. Parameters are specified by a keyword, followed by a colon; arguments are
separated by white space. The first parameter must be ‘ Key-Type' but control statements may be
placed anywhere. The order of the parameters does not matter except for ‘Key-Type'. The parameters
are only used for the generated keyblock (primary and subkeys); parameters from previous sets are not
used. Some syntax checks may be performed. Key commences when either the end of the parameter
fileisreached, the next ‘Key-Type' parameter is encountered, or the control statement ‘%commit’ is
encountered.

Control statements:

% echo text
Print text as diagnostic.

%dry-run
Suppress actua key generation (useful for syntax checking).

% commit
Perform the key generation. Note that an implicit commit is done at the next parameter.

% pubring filename
Do not write the key to the default or commandline given keyring but to filename. This must be
given before the first commit to take place, duplicate specification of the same filename isignored,
the last filename before acommit isused. The filename is used until a new filenameis used (at
commit points) and all keys are written to that file. If anew filename is given, thisfileis created
(and overwrites an existing one).

See the previous subsection ‘* Ephemeral home directories’ for amore robust way to contain side-

effects.

% secring filename

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

Thisoption is ano-op for GnuPG 2.1 and later.

See the previous subsection ‘* Ephemeral home directories’’.

% ask-passphrase
% no-ask-passphrase
This option is a no-op since GnuPG version 2.1.

% no-protection
Using this option allows the creation of keys without any passphrase protection. Thisoptionis
mainly intended for regression tests.

%transient-key
If given the keys are created using a faster and a somewhat |ess secure random number generator.
This option may be used for keys which are only used for a short time and do not require full
cryptographic strength. It takes only effect if used together with the control statement
‘%no-protection’.

General Parameters:

Key-Type: algo
Starts a new parameter block by giving the type of the primary key. The agorithm must be capable
of signing. Thisisarequired parameter. algo may either be an OpenPGP algorithm number or a
string with the algorithm name. The special value ‘default’ may be used for algo to create the
default key type; in this case a‘Key-Usage' shall not be given and ‘ default’ also be used for
‘Subkey-Type'.

Key-Length: nbits
The requested length of the generated key in bits. The default is returned by running the command
‘gpg --gpgconf-list’. For ECC keys this parameter isignored.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

Key-Curve: curve
The requested elliptic curve of the generated key. Thisisarequired parameter for ECC keys. Itis
ignored for non-ECC keys.

Key-Grip: hexstring
Thisisoptional and used to generate a CSR or certificate for an already existing key. Key-Length
will be ignored when given.

Key-Usage: usage-list
Space or commadelimited list of key usages. Allowed values are ‘encrypt’, ‘sign’, and ‘auth’.
Thisisused to generate the key flags. Please make sure that the algorithm is capabl e of this usage.
Note that OpenPGP requires that al primary keys are capable of certification, so no matter what
usage is given here, the ‘cert’ flag will be on. If no ‘Key-Usage' is specified and the ‘Key-Type' is
not ‘default’, al allowed usages for that particular agorithm are used; if it is not given but
‘default’ is used the usage will be ‘sign’.

Subkey-Type: algo
This generates a secondary key (subkey). Currently only one subkey can be handled. See aso
‘Key-Type' above.

Subkey-L ength: nbits
Length of the secondary key (subkey) in bits. The default is returned by running the command
‘gpg --gpgconf-list’.

Subkey-Curve: curve
Key curve for asubkey; similar to ‘Key-Curve'.

Subkey-Usage: usage-list
Key usage lists for a subkey; similar to ‘Key-Usage'.

Passphrase: string
If you want to specify a passphrase for the secret key, enter it here. Default isto use the Pinentry
dialog to ask for a passphrase.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

Name-Real: hame

Name-Comment: comment

Name-Email: email
The three parts of a user name. Remember to use UTF-8 encoding here. If you don't give any of
them, no user ID is created.

Expire-Date: iso-date|(number[d|w|m]y])
Set the expiration date for the key (and the subkey). It may either be entered in 1SO date format
(e.g. "20000815T145012") or as number of days, weeks, month or years after the creation date.
The special notation "seconds=N" is also allowed to specify a number of seconds since creation.
Without aletter days are assumed. Note that there is no check done on the overflow of the type
used by OpenPGP for timestamps. Thus you better make sure that the given value make sense.
Although OpenPGP works with time intervals, GnuPG uses an absolute value internally and thus
the last year we can represent is 2105.

Creation-Date: iso-date
Set the creation date of the key as stored in the key information and which is also part of the
fingerprint calculation. Either adate like "1986-04-26" or afull timestamp like
19860426 T042640" may be used. Thetimeisconsidered to be UTC. The special notation
"seconds=N" may be used to directly specify athe number of seconds since Epoch (Unix time). If
it isnot given the current timeis used.

Preferences: string
Set the cipher, hash, and compression preference values for thiskey. This expects the same type of
string as the sub-command * setpref’ in the --edit-key menu.

Revoker: algo:fpr [sensitive]
Add adesignated revoker to the generated key. Algo isthe public key algorithm of the designated
revoker (i.e. RSA=1, DSA=17, etc.) fpr isthefingerprint of the designated revoker. fpr may not
contain spaces or colons. The optiona ‘ sensitive’ flag marks the designated revoker as sensitive
information. Only v4 and v5 keys may be designated revokers.

Keyserver: string
Thisisan optional parameter that specifies the preferred keyserver URL for the key.

GnuPG 2.4.9 2025-02-19 GPG(1)

GPG(1) GNU Privacy Guard 2.4

Handle: string
Thisisan optional parameter only used with the status lines KEY _CREATED and

GPG(1)

KEY_NOT_CREATED. string may be up to 100 characters and should not contain spaces. Itis

useful for batch key generation to associate a key parameter block with a status line.

Here is an example on how to create akey in an ephemeral home directory:

$ export GNUPGHOM E="$(mktemp -d)"

$ cat >foo <<EOF
%echo Generating a basic OpenPGP key
Key-Type: DSA
Key-Length: 1024
Subkey-Type: ELG-E
Subkey-L ength: 1024
Name-Real: Joe Tester
Name-Comment: with stupid passphrase
Name-Email: joe@foo.bar
Expire-Date: 0
Passphrase; abc
Do acommit here, so that we can later print "done" :-)
%commit
%echo done

EOF

$ gpg --batch --generate-key foo

[...]
$ gpg --list-secret-keys
ftmp/tmp.ONQxB 74PEf/pubring.kbx

sec dsal024 2016-12-16 [SCA]
768E895903FC1C44045C8CB95EEBDB71E9E849D0

uid [ultimate] Joe Tester (with stupid passphrase) <joe@foo.bar>

ssb €lg1024 2016-12-16 [E]

If you want to create a key with the default algorithms you would use these parameters:
%echo Generating a default key
Key-Type: default
Subkey-Type: default
Name-Real: Joe Tester

GnuPG 2.4.9 2025-02-19

GPG(1)

GPG(1) GNU Privacy Guard 2.4 GPG(1)

Name-Comment: with stupid passphrase

Name-Email: joe@foo.bar

Expire-Date: 0

Passphrase; abc

Do acommit here, so that we can later print "done" :-)
%commit

%echo done

BUGS
On older systems this program should be installed as setuid(root). Thisis necessary to lock memory
pages. Locking memory pages prevents the operating system from writing memory pages (which may
contain passphrases or other sensitive material) to disk. If you get no warning message about insecure
memory your operating system supports locking without being root. The program drops root privileges
as soon as locked memory is allocated.

Note also that some systems (especially laptops) have the ability to ‘* suspend to disk’’ (also known as
‘‘safe dlegp’’ or ‘‘hibernate’’). Thiswrites all memory to disk before going into alow power or even

powered off mode. Unless measures are taken in the operating system to protect the saved memory,
passphrases or other sensitive material may be recoverable from it later.

Before you report a bug you should first search the mailing list archives for similar problems and

second check whether such a bug has already been reported to our bug tracker at
https.//bugs.gnupg.org.

SEE AL SO
gpgv(1), gpgsm(l), gpg-agent(1)

The full documentation for this tool is maintained as a Texinfo manual. |If GnuPG and the info
program are properly installed at your site, the command

info gnupg

should give you access to the complete manual including a menu structure and an index.

GnuPG 2.4.9 2025-02-19 GPG(1)

